|
@@ -0,0 +1,858 @@
|
|
|
+//AVRISP Specifique pour platine HVSPreset
|
|
|
+
|
|
|
+
|
|
|
+#define I2C_SCL PC5 // I2C Serial Clock (SCK)
|
|
|
+#define I2C_SDA PC4 // I2C Serial Data (SDA)
|
|
|
+
|
|
|
+#define I2C_SDA_HIGH() DDRC &= ~(1<<I2C_SDA) // release SDA -> pulled HIGH by resistor
|
|
|
+#define I2C_SDA_LOW() DDRC |= (1<<I2C_SDA) // SDA as output -> pulled LOW by MCU
|
|
|
+#define I2C_SCL_HIGH() DDRC &= ~(1<<I2C_SCL) // release SCL -> pulled HIGH by resistor
|
|
|
+#define I2C_SCL_LOW() DDRC |= (1<<I2C_SCL) // SCL as output -> pulled LOW by MCU
|
|
|
+#define I2C_DELAY() asm("lpm") // delay 3 clock cycles
|
|
|
+#define I2C_CLOCKOUT() I2C_SCL_HIGH();I2C_DELAY();I2C_SCL_LOW() // clock out
|
|
|
+
|
|
|
+
|
|
|
+
|
|
|
+#include "Arduino.h"
|
|
|
+#undef SERIAL
|
|
|
+
|
|
|
+
|
|
|
+#define PROG_FLICKER true
|
|
|
+
|
|
|
+// Configure SPI clock (in Hz).
|
|
|
+// E.g. for an ATtiny @ 128 kHz: the datasheet states that both the high and low
|
|
|
+// SPI clock pulse must be > 2 CPU cycles, so take 3 cycles i.e. divide target
|
|
|
+// f_cpu by 6:
|
|
|
+// #define SPI_CLOCK (128000/6)
|
|
|
+//
|
|
|
+// A clock slow enough for an ATtiny85 @ 1 MHz, is a reasonable default:
|
|
|
+
|
|
|
+#define SPI_CLOCK (1000000/6)
|
|
|
+
|
|
|
+
|
|
|
+// Select hardware or software SPI, depending on SPI clock.
|
|
|
+// Currently only for AVR, for other architectures (Due, Zero,...), hardware SPI
|
|
|
+// is probably too fast anyway.
|
|
|
+
|
|
|
+#if defined(ARDUINO_ARCH_AVR)
|
|
|
+
|
|
|
+#if SPI_CLOCK > (F_CPU / 128)
|
|
|
+#define USE_HARDWARE_SPI
|
|
|
+#endif
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+// Configure which pins to use:
|
|
|
+
|
|
|
+#define VCC 8
|
|
|
+#define RESET 13 // Use pin 10 to reset the target rather than SS
|
|
|
+#define PIN_MOSI 9
|
|
|
+#define PIN_MISO 10
|
|
|
+#define PIN_SCK 11
|
|
|
+#define PIN2 12
|
|
|
+
|
|
|
+// By default, use hardware SPI pins:
|
|
|
+#ifndef PIN_MOSI
|
|
|
+#define PIN_MOSI MOSI
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef PIN_MISO
|
|
|
+#define PIN_MISO MISO
|
|
|
+#endif
|
|
|
+
|
|
|
+#ifndef PIN_SCK
|
|
|
+#define PIN_SCK SCK
|
|
|
+#endif
|
|
|
+
|
|
|
+// Force bitbanged SPI if not using the hardware SPI pins:
|
|
|
+#if (PIN_MISO != MISO) || (PIN_MOSI != MOSI) || (PIN_SCK != SCK)
|
|
|
+#undef USE_HARDWARE_SPI
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+// Configure the serial port to use.
|
|
|
+//
|
|
|
+// Prefer the USB virtual serial port (aka. native USB port), if the Arduino has one:
|
|
|
+// - it does not autoreset (except for the magic baud rate of 1200).
|
|
|
+// - it is more reliable because of USB handshaking.
|
|
|
+//
|
|
|
+// Leonardo and similar have an USB virtual serial port: 'Serial'.
|
|
|
+// Due and Zero have an USB virtual serial port: 'SerialUSB'.
|
|
|
+//
|
|
|
+// On the Due and Zero, 'Serial' can be used too, provided you disable autoreset.
|
|
|
+// To use 'Serial': #define SERIAL Serial
|
|
|
+
|
|
|
+#ifdef SERIAL_PORT_USBVIRTUAL
|
|
|
+#define SERIAL SERIAL_PORT_USBVIRTUAL
|
|
|
+#else
|
|
|
+#define SERIAL Serial
|
|
|
+#endif
|
|
|
+
|
|
|
+
|
|
|
+// Configure the baud rate:
|
|
|
+
|
|
|
+#define BAUDRATE 19200
|
|
|
+// #define BAUDRATE 115200
|
|
|
+// #define BAUDRATE 1000000
|
|
|
+
|
|
|
+
|
|
|
+#define HWVER 2
|
|
|
+#define SWMAJ 1
|
|
|
+#define SWMIN 18
|
|
|
+
|
|
|
+// STK Definitions
|
|
|
+#define STK_OK 0x10
|
|
|
+#define STK_FAILED 0x11
|
|
|
+#define STK_UNKNOWN 0x12
|
|
|
+#define STK_INSYNC 0x14
|
|
|
+#define STK_NOSYNC 0x15
|
|
|
+#define CRC_EOP 0x20 //ok it is a space...
|
|
|
+
|
|
|
+void pulse(int pin, int times);
|
|
|
+
|
|
|
+#ifdef USE_HARDWARE_SPI
|
|
|
+#include "SPI.h"
|
|
|
+#else
|
|
|
+
|
|
|
+#define SPI_MODE0 0x00
|
|
|
+
|
|
|
+#if !defined(ARDUINO_API_VERSION) || ARDUINO_API_VERSION != 10001 // A SPISettings class is declared by ArduinoCore-API 1.0.1
|
|
|
+class SPISettings {
|
|
|
+ public:
|
|
|
+ // clock is in Hz
|
|
|
+ SPISettings(uint32_t clock, uint8_t bitOrder, uint8_t dataMode) : clockFreq(clock) {
|
|
|
+ (void) bitOrder;
|
|
|
+ (void) dataMode;
|
|
|
+ };
|
|
|
+
|
|
|
+ uint32_t getClockFreq() const {
|
|
|
+ return clockFreq;
|
|
|
+ }
|
|
|
+
|
|
|
+ private:
|
|
|
+ uint32_t clockFreq;
|
|
|
+};
|
|
|
+#endif // !defined(ARDUINO_API_VERSION)
|
|
|
+
|
|
|
+class BitBangedSPI {
|
|
|
+ public:
|
|
|
+ void begin() {
|
|
|
+ digitalWrite(PIN_SCK, LOW);
|
|
|
+ digitalWrite(PIN_MOSI, LOW);
|
|
|
+ pinMode(PIN_SCK, OUTPUT);
|
|
|
+ pinMode(PIN_MOSI, OUTPUT);
|
|
|
+ pinMode(PIN_MISO, INPUT);
|
|
|
+ }
|
|
|
+
|
|
|
+ void beginTransaction(SPISettings settings) {
|
|
|
+ pulseWidth = (500000 + settings.getClockFreq() - 1) / settings.getClockFreq();
|
|
|
+ if (pulseWidth == 0) {
|
|
|
+ pulseWidth = 1;
|
|
|
+ }
|
|
|
+ }
|
|
|
+
|
|
|
+ void end() {}
|
|
|
+
|
|
|
+ uint8_t transfer(uint8_t b) {
|
|
|
+ for (unsigned int i = 0; i < 8; ++i) {
|
|
|
+ digitalWrite(PIN_MOSI, (b & 0x80) ? HIGH : LOW);
|
|
|
+ digitalWrite(PIN_SCK, HIGH);
|
|
|
+ delayMicroseconds(pulseWidth);
|
|
|
+ b = (b << 1) | digitalRead(PIN_MISO);
|
|
|
+ digitalWrite(PIN_SCK, LOW); // slow pulse
|
|
|
+ delayMicroseconds(pulseWidth);
|
|
|
+ }
|
|
|
+ return b;
|
|
|
+ }
|
|
|
+
|
|
|
+ private:
|
|
|
+ unsigned long pulseWidth; // in microseconds
|
|
|
+};
|
|
|
+
|
|
|
+static BitBangedSPI SPI;
|
|
|
+
|
|
|
+#endif
|
|
|
+
|
|
|
+const char TitleScreen[] PROGMEM =
|
|
|
+" AVRISP Mode: "
|
|
|
+" "
|
|
|
+"Disconnect 12 Volts !";
|
|
|
+
|
|
|
+void setup() {
|
|
|
+ SERIAL.begin(BAUDRATE);
|
|
|
+ pinMode(VCC,OUTPUT);
|
|
|
+ pinMode(PIN2,OUTPUT);
|
|
|
+ digitalWrite(VCC,HIGH);
|
|
|
+ digitalWrite(PIN2,LOW);
|
|
|
+ reset_target(false);
|
|
|
+ OLED_init();
|
|
|
+ OLED_clearScreen();
|
|
|
+ OLED_setCursor(0,0);
|
|
|
+ OLED_printPrg(TitleScreen);
|
|
|
+}
|
|
|
+
|
|
|
+int ISPError = 0;
|
|
|
+int pmode = 0;
|
|
|
+// address for reading and writing, set by 'U' command
|
|
|
+unsigned int here;
|
|
|
+uint8_t buff[256]; // global block storage
|
|
|
+
|
|
|
+#define beget16(addr) (*addr * 256 + *(addr+1) )
|
|
|
+typedef struct param {
|
|
|
+ uint8_t devicecode;
|
|
|
+ uint8_t revision;
|
|
|
+ uint8_t progtype;
|
|
|
+ uint8_t parmode;
|
|
|
+ uint8_t polling;
|
|
|
+ uint8_t selftimed;
|
|
|
+ uint8_t lockbytes;
|
|
|
+ uint8_t fusebytes;
|
|
|
+ uint8_t flashpoll;
|
|
|
+ uint16_t eeprompoll;
|
|
|
+ uint16_t pagesize;
|
|
|
+ uint16_t eepromsize;
|
|
|
+ uint32_t flashsize;
|
|
|
+}
|
|
|
+parameter;
|
|
|
+
|
|
|
+parameter param;
|
|
|
+
|
|
|
+// this provides a heartbeat on pin 9, so you can tell the software is running.
|
|
|
+uint8_t hbval = 128;
|
|
|
+int8_t hbdelta = 8;
|
|
|
+void heartbeat() {
|
|
|
+ static unsigned long last_time = 0;
|
|
|
+ unsigned long now = millis();
|
|
|
+ if ((now - last_time) < 40) {
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ last_time = now;
|
|
|
+ if (hbval > 192) {
|
|
|
+ hbdelta = -hbdelta;
|
|
|
+ }
|
|
|
+ if (hbval < 32) {
|
|
|
+ hbdelta = -hbdelta;
|
|
|
+ }
|
|
|
+ hbval += hbdelta;
|
|
|
+
|
|
|
+}
|
|
|
+
|
|
|
+static bool rst_active_high;
|
|
|
+
|
|
|
+void reset_target(bool reset) {
|
|
|
+ digitalWrite(RESET, ((reset && rst_active_high) || (!reset && !rst_active_high)) ? HIGH : LOW);
|
|
|
+}
|
|
|
+
|
|
|
+void loop(void) {
|
|
|
+ // is pmode active?
|
|
|
+ if (pmode) {
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ }
|
|
|
+ // is there an error?
|
|
|
+ if (ISPError) {
|
|
|
+
|
|
|
+ } else {
|
|
|
+
|
|
|
+ }
|
|
|
+
|
|
|
+ // light the heartbeat LED
|
|
|
+ heartbeat();
|
|
|
+ if (SERIAL.available()) {
|
|
|
+ avrisp();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+uint8_t getch() {
|
|
|
+ while (!SERIAL.available());
|
|
|
+ return SERIAL.read();
|
|
|
+}
|
|
|
+void fill(int n) {
|
|
|
+ for (int x = 0; x < n; x++) {
|
|
|
+ buff[x] = getch();
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+#define PTIME 30
|
|
|
+void pulse(int pin, int times) {
|
|
|
+ do {
|
|
|
+ digitalWrite(pin, HIGH);
|
|
|
+ delay(PTIME);
|
|
|
+ digitalWrite(pin, LOW);
|
|
|
+ delay(PTIME);
|
|
|
+ } while (times--);
|
|
|
+}
|
|
|
+
|
|
|
+void prog_lamp(int state) {
|
|
|
+ if (PROG_FLICKER) {
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+uint8_t spi_transaction(uint8_t a, uint8_t b, uint8_t c, uint8_t d) {
|
|
|
+ SPI.transfer(a);
|
|
|
+ SPI.transfer(b);
|
|
|
+ SPI.transfer(c);
|
|
|
+ return SPI.transfer(d);
|
|
|
+}
|
|
|
+
|
|
|
+void empty_reply() {
|
|
|
+ if (CRC_EOP == getch()) {
|
|
|
+ SERIAL.print((char)STK_INSYNC);
|
|
|
+ SERIAL.print((char)STK_OK);
|
|
|
+ } else {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char)STK_NOSYNC);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void breply(uint8_t b) {
|
|
|
+ if (CRC_EOP == getch()) {
|
|
|
+ SERIAL.print((char)STK_INSYNC);
|
|
|
+ SERIAL.print((char)b);
|
|
|
+ SERIAL.print((char)STK_OK);
|
|
|
+ } else {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char)STK_NOSYNC);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void get_version(uint8_t c) {
|
|
|
+ switch (c) {
|
|
|
+ case 0x80:
|
|
|
+ breply(HWVER);
|
|
|
+ break;
|
|
|
+ case 0x81:
|
|
|
+ breply(SWMAJ);
|
|
|
+ break;
|
|
|
+ case 0x82:
|
|
|
+ breply(SWMIN);
|
|
|
+ break;
|
|
|
+ case 0x93:
|
|
|
+ breply('S'); // serial programmer
|
|
|
+ break;
|
|
|
+ default:
|
|
|
+ breply(0);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void set_parameters() {
|
|
|
+ // call this after reading parameter packet into buff[]
|
|
|
+ param.devicecode = buff[0];
|
|
|
+ param.revision = buff[1];
|
|
|
+ param.progtype = buff[2];
|
|
|
+ param.parmode = buff[3];
|
|
|
+ param.polling = buff[4];
|
|
|
+ param.selftimed = buff[5];
|
|
|
+ param.lockbytes = buff[6];
|
|
|
+ param.fusebytes = buff[7];
|
|
|
+ param.flashpoll = buff[8];
|
|
|
+ // ignore buff[9] (= buff[8])
|
|
|
+ // following are 16 bits (big endian)
|
|
|
+ param.eeprompoll = beget16(&buff[10]);
|
|
|
+ param.pagesize = beget16(&buff[12]);
|
|
|
+ param.eepromsize = beget16(&buff[14]);
|
|
|
+
|
|
|
+ // 32 bits flashsize (big endian)
|
|
|
+ param.flashsize = buff[16] * 0x01000000
|
|
|
+ + buff[17] * 0x00010000
|
|
|
+ + buff[18] * 0x00000100
|
|
|
+ + buff[19];
|
|
|
+
|
|
|
+ // AVR devices have active low reset, AT89Sx are active high
|
|
|
+ rst_active_high = (param.devicecode >= 0xe0);
|
|
|
+}
|
|
|
+
|
|
|
+void start_pmode() {
|
|
|
+
|
|
|
+ // Reset target before driving PIN_SCK or PIN_MOSI
|
|
|
+
|
|
|
+ // SPI.begin() will configure SS as output, so SPI master mode is selected.
|
|
|
+ // We have defined RESET as pin 10, which for many Arduinos is not the SS pin.
|
|
|
+ // So we have to configure RESET as output here,
|
|
|
+ // (reset_target() first sets the correct level)
|
|
|
+ reset_target(false); //true
|
|
|
+ pinMode(RESET, OUTPUT);
|
|
|
+ SPI.begin();
|
|
|
+ SPI.beginTransaction(SPISettings(SPI_CLOCK, MSBFIRST, SPI_MODE0));
|
|
|
+
|
|
|
+ // See AVR datasheets, chapter "SERIAL_PRG Programming Algorithm":
|
|
|
+
|
|
|
+ // Pulse RESET after PIN_SCK is low:
|
|
|
+ digitalWrite(PIN_SCK, LOW);
|
|
|
+ delay(20); // discharge PIN_SCK, value arbitrarily chosen
|
|
|
+ reset_target(true); //false
|
|
|
+ // Pulse must be minimum 2 target CPU clock cycles so 100 usec is ok for CPU
|
|
|
+ // speeds above 20 KHz
|
|
|
+ delayMicroseconds(100);
|
|
|
+ reset_target(false); //true
|
|
|
+
|
|
|
+ // Send the enable programming command:
|
|
|
+ delay(50); // datasheet: must be > 20 msec
|
|
|
+ spi_transaction(0xAC, 0x53, 0x00, 0x00);
|
|
|
+ pmode = 1;
|
|
|
+}
|
|
|
+
|
|
|
+void end_pmode() {
|
|
|
+ SPI.end();
|
|
|
+ // We're about to take the target out of reset so configure SPI pins as input
|
|
|
+ pinMode(PIN_MOSI, INPUT);
|
|
|
+ pinMode(PIN_SCK, INPUT);
|
|
|
+ reset_target(true); //false
|
|
|
+ pinMode(RESET, INPUT);
|
|
|
+ pmode = 0;
|
|
|
+}
|
|
|
+
|
|
|
+void universal() {
|
|
|
+ uint8_t ch;
|
|
|
+
|
|
|
+ fill(4);
|
|
|
+ ch = spi_transaction(buff[0], buff[1], buff[2], buff[3]);
|
|
|
+ breply(ch);
|
|
|
+}
|
|
|
+
|
|
|
+void flash(uint8_t hilo, unsigned int addr, uint8_t data) {
|
|
|
+ spi_transaction(0x40 + 8 * hilo,
|
|
|
+ addr >> 8 & 0xFF,
|
|
|
+ addr & 0xFF,
|
|
|
+ data);
|
|
|
+}
|
|
|
+void commit(unsigned int addr) {
|
|
|
+ if (PROG_FLICKER) {
|
|
|
+ prog_lamp(LOW);
|
|
|
+ }
|
|
|
+ spi_transaction(0x4C, (addr >> 8) & 0xFF, addr & 0xFF, 0);
|
|
|
+ if (PROG_FLICKER) {
|
|
|
+ delay(PTIME);
|
|
|
+ prog_lamp(HIGH);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+unsigned int current_page() {
|
|
|
+ if (param.pagesize == 32) {
|
|
|
+ return here & 0xFFFFFFF0;
|
|
|
+ }
|
|
|
+ if (param.pagesize == 64) {
|
|
|
+ return here & 0xFFFFFFE0;
|
|
|
+ }
|
|
|
+ if (param.pagesize == 128) {
|
|
|
+ return here & 0xFFFFFFC0;
|
|
|
+ }
|
|
|
+ if (param.pagesize == 256) {
|
|
|
+ return here & 0xFFFFFF80;
|
|
|
+ }
|
|
|
+ return here;
|
|
|
+}
|
|
|
+
|
|
|
+
|
|
|
+void write_flash(int length) {
|
|
|
+ fill(length);
|
|
|
+ if (CRC_EOP == getch()) {
|
|
|
+ SERIAL.print((char) STK_INSYNC);
|
|
|
+ SERIAL.print((char) write_flash_pages(length));
|
|
|
+ } else {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char) STK_NOSYNC);
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+uint8_t write_flash_pages(int length) {
|
|
|
+ int x = 0;
|
|
|
+ unsigned int page = current_page();
|
|
|
+ while (x < length) {
|
|
|
+ if (page != current_page()) {
|
|
|
+ commit(page);
|
|
|
+ page = current_page();
|
|
|
+ }
|
|
|
+ flash(LOW, here, buff[x++]);
|
|
|
+ flash(HIGH, here, buff[x++]);
|
|
|
+ here++;
|
|
|
+ }
|
|
|
+
|
|
|
+ commit(page);
|
|
|
+
|
|
|
+ return STK_OK;
|
|
|
+}
|
|
|
+
|
|
|
+#define EECHUNK (32)
|
|
|
+uint8_t write_eeprom(unsigned int length) {
|
|
|
+ // here is a word address, get the byte address
|
|
|
+ unsigned int start = here * 2;
|
|
|
+ unsigned int remaining = length;
|
|
|
+ if (length > param.eepromsize) {
|
|
|
+ ISPError++;
|
|
|
+ return STK_FAILED;
|
|
|
+ }
|
|
|
+ while (remaining > EECHUNK) {
|
|
|
+ write_eeprom_chunk(start, EECHUNK);
|
|
|
+ start += EECHUNK;
|
|
|
+ remaining -= EECHUNK;
|
|
|
+ }
|
|
|
+ write_eeprom_chunk(start, remaining);
|
|
|
+ return STK_OK;
|
|
|
+}
|
|
|
+// write (length) bytes, (start) is a byte address
|
|
|
+uint8_t write_eeprom_chunk(unsigned int start, unsigned int length) {
|
|
|
+ // this writes byte-by-byte, page writing may be faster (4 bytes at a time)
|
|
|
+ fill(length);
|
|
|
+ prog_lamp(LOW);
|
|
|
+ for (unsigned int x = 0; x < length; x++) {
|
|
|
+ unsigned int addr = start + x;
|
|
|
+ spi_transaction(0xC0, (addr >> 8) & 0xFF, addr & 0xFF, buff[x]);
|
|
|
+ delay(45);
|
|
|
+ }
|
|
|
+ prog_lamp(HIGH);
|
|
|
+ return STK_OK;
|
|
|
+}
|
|
|
+
|
|
|
+void program_page() {
|
|
|
+ char result = (char) STK_FAILED;
|
|
|
+ unsigned int length = 256 * getch();
|
|
|
+ length += getch();
|
|
|
+ char memtype = getch();
|
|
|
+ // flash memory @here, (length) bytes
|
|
|
+ if (memtype == 'F') {
|
|
|
+ write_flash(length);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ if (memtype == 'E') {
|
|
|
+ result = (char)write_eeprom(length);
|
|
|
+ if (CRC_EOP == getch()) {
|
|
|
+ SERIAL.print((char) STK_INSYNC);
|
|
|
+ SERIAL.print(result);
|
|
|
+ } else {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char) STK_NOSYNC);
|
|
|
+ }
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ SERIAL.print((char)STK_FAILED);
|
|
|
+ return;
|
|
|
+}
|
|
|
+
|
|
|
+uint8_t flash_read(uint8_t hilo, unsigned int addr) {
|
|
|
+ return spi_transaction(0x20 + hilo * 8,
|
|
|
+ (addr >> 8) & 0xFF,
|
|
|
+ addr & 0xFF,
|
|
|
+ 0);
|
|
|
+}
|
|
|
+
|
|
|
+char flash_read_page(int length) {
|
|
|
+ for (int x = 0; x < length; x += 2) {
|
|
|
+ uint8_t low = flash_read(LOW, here);
|
|
|
+ SERIAL.print((char) low);
|
|
|
+ uint8_t high = flash_read(HIGH, here);
|
|
|
+ SERIAL.print((char) high);
|
|
|
+ here++;
|
|
|
+ }
|
|
|
+ return STK_OK;
|
|
|
+}
|
|
|
+
|
|
|
+char eeprom_read_page(int length) {
|
|
|
+ // here again we have a word address
|
|
|
+ int start = here * 2;
|
|
|
+ for (int x = 0; x < length; x++) {
|
|
|
+ int addr = start + x;
|
|
|
+ uint8_t ee = spi_transaction(0xA0, (addr >> 8) & 0xFF, addr & 0xFF, 0xFF);
|
|
|
+ SERIAL.print((char) ee);
|
|
|
+ }
|
|
|
+ return STK_OK;
|
|
|
+}
|
|
|
+
|
|
|
+void read_page() {
|
|
|
+ char result = (char)STK_FAILED;
|
|
|
+ int length = 256 * getch();
|
|
|
+ length += getch();
|
|
|
+ char memtype = getch();
|
|
|
+ if (CRC_EOP != getch()) {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char) STK_NOSYNC);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ SERIAL.print((char) STK_INSYNC);
|
|
|
+ if (memtype == 'F') {
|
|
|
+ result = flash_read_page(length);
|
|
|
+ }
|
|
|
+ if (memtype == 'E') {
|
|
|
+ result = eeprom_read_page(length);
|
|
|
+ }
|
|
|
+ SERIAL.print(result);
|
|
|
+}
|
|
|
+
|
|
|
+void read_signature() {
|
|
|
+ if (CRC_EOP != getch()) {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char) STK_NOSYNC);
|
|
|
+ return;
|
|
|
+ }
|
|
|
+ SERIAL.print((char) STK_INSYNC);
|
|
|
+ uint8_t high = spi_transaction(0x30, 0x00, 0x00, 0x00);
|
|
|
+ SERIAL.print((char) high);
|
|
|
+ uint8_t middle = spi_transaction(0x30, 0x00, 0x01, 0x00);
|
|
|
+ SERIAL.print((char) middle);
|
|
|
+ uint8_t low = spi_transaction(0x30, 0x00, 0x02, 0x00);
|
|
|
+ SERIAL.print((char) low);
|
|
|
+ SERIAL.print((char) STK_OK);
|
|
|
+}
|
|
|
+//////////////////////////////////////////
|
|
|
+//////////////////////////////////////////
|
|
|
+
|
|
|
+
|
|
|
+////////////////////////////////////
|
|
|
+////////////////////////////////////
|
|
|
+void avrisp() {
|
|
|
+ uint8_t ch = getch();
|
|
|
+ switch (ch) {
|
|
|
+ case '0': // signon
|
|
|
+ ISPError = 0;
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+ case '1':
|
|
|
+ if (getch() == CRC_EOP) {
|
|
|
+ SERIAL.print((char) STK_INSYNC);
|
|
|
+ SERIAL.print("AVR ISP");
|
|
|
+ SERIAL.print((char) STK_OK);
|
|
|
+ } else {
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char) STK_NOSYNC);
|
|
|
+ }
|
|
|
+ break;
|
|
|
+ case 'A':
|
|
|
+ get_version(getch());
|
|
|
+ break;
|
|
|
+ case 'B':
|
|
|
+ fill(20);
|
|
|
+ set_parameters();
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+ case 'E': // extended parameters - ignore for now
|
|
|
+ fill(5);
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+ case 'P':
|
|
|
+ if (!pmode) {
|
|
|
+ start_pmode();
|
|
|
+ }
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+ case 'U': // set address (word)
|
|
|
+ here = getch();
|
|
|
+ here += 256 * getch();
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 0x60: //STK_PROG_FLASH
|
|
|
+ getch(); // low addr
|
|
|
+ getch(); // high addr
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+ case 0x61: //STK_PROG_DATA
|
|
|
+ getch(); // data
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 0x64: //STK_PROG_PAGE
|
|
|
+ program_page();
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 0x74: //STK_READ_PAGE 't'
|
|
|
+ read_page();
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 'V': //0x56
|
|
|
+ universal();
|
|
|
+ break;
|
|
|
+ case 'Q': //0x51
|
|
|
+ ISPError = 0;
|
|
|
+ end_pmode();
|
|
|
+ empty_reply();
|
|
|
+ break;
|
|
|
+
|
|
|
+ case 0x75: //STK_READ_SIGN 'u'
|
|
|
+ read_signature();
|
|
|
+ break;
|
|
|
+
|
|
|
+ // expecting a command, not CRC_EOP
|
|
|
+ // this is how we can get back in sync
|
|
|
+ case CRC_EOP:
|
|
|
+ ISPError++;
|
|
|
+ SERIAL.print((char) STK_NOSYNC);
|
|
|
+ break;
|
|
|
+
|
|
|
+ // anything else we will return STK_UNKNOWN
|
|
|
+ default:
|
|
|
+ ISPError++;
|
|
|
+ if (CRC_EOP == getch()) {
|
|
|
+ SERIAL.print((char)STK_UNKNOWN);
|
|
|
+ } else {
|
|
|
+ SERIAL.print((char)STK_NOSYNC);
|
|
|
+ }
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+void I2C_init(void) {
|
|
|
+ DDRC &= ~((1<<I2C_SDA)|(1<<I2C_SCL)); // pins as input (HIGH-Z) -> lines released
|
|
|
+ PORTC &= ~((1<<I2C_SDA)|(1<<I2C_SCL)); // should be LOW when as ouput
|
|
|
+}
|
|
|
+
|
|
|
+void I2C_write(uint8_t data) {
|
|
|
+ for(uint8_t i = 8; i; i--, data<<=1) { // transmit 8 bits, MSB first
|
|
|
+ (data & 0x80) ? (I2C_SDA_HIGH()) : (I2C_SDA_LOW()); // SDA HIGH if bit is 1
|
|
|
+ I2C_CLOCKOUT(); // clock out -> slave reads the bit
|
|
|
+ }
|
|
|
+ I2C_DELAY(); // delay 3 clock cycles
|
|
|
+ I2C_SDA_HIGH(); // release SDA for ACK bit of slave
|
|
|
+ I2C_CLOCKOUT(); // 9th clock pulse is for the ignored ACK bit
|
|
|
+}
|
|
|
+
|
|
|
+// I2C start transmission
|
|
|
+void I2C_start(uint8_t addr) {
|
|
|
+ I2C_SDA_LOW(); // start condition: SDA goes LOW first
|
|
|
+ I2C_SCL_LOW(); // start condition: SCL goes LOW second
|
|
|
+ I2C_write(addr); // send slave address
|
|
|
+}
|
|
|
+
|
|
|
+// I2C stop transmission
|
|
|
+void I2C_stop(void) {
|
|
|
+ I2C_SDA_LOW(); // prepare SDA for LOW to HIGH transition
|
|
|
+ I2C_SCL_HIGH(); // stop condition: SCL goes HIGH first
|
|
|
+ I2C_SDA_HIGH(); // stop condition: SDA goes HIGH second
|
|
|
+}
|
|
|
+
|
|
|
+// ===================================================================================
|
|
|
+// OLED Implementation
|
|
|
+// ===================================================================================
|
|
|
+
|
|
|
+// OLED definitions
|
|
|
+#define OLED_ADDR 0x78 // OLED write address
|
|
|
+#define OLED_CMD_MODE 0x00 // set command mode
|
|
|
+#define OLED_DAT_MODE 0x40 // set data mode
|
|
|
+#define OLED_INIT_LEN 9 // length of init command array
|
|
|
+
|
|
|
+// OLED 5x8 pixels character set
|
|
|
+const uint8_t OLED_FONT[] PROGMEM = {
|
|
|
+ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x2F, 0x00, 0x00, 0x00, 0x07, 0x00, 0x07, 0x00,
|
|
|
+ 0x14, 0x7F, 0x14, 0x7F, 0x14, 0x24, 0x2A, 0x7F, 0x2A, 0x12, 0x23, 0x13, 0x08, 0x64, 0x62,
|
|
|
+ 0x36, 0x49, 0x55, 0x22, 0x50, 0x00, 0x05, 0x03, 0x00, 0x00, 0x00, 0x1C, 0x22, 0x41, 0x00,
|
|
|
+ 0x00, 0x41, 0x22, 0x1C, 0x00, 0x14, 0x08, 0x3E, 0x08, 0x14, 0x08, 0x08, 0x3E, 0x08, 0x08,
|
|
|
+ 0x00, 0x00, 0xA0, 0x60, 0x00, 0x08, 0x08, 0x08, 0x08, 0x08, 0x00, 0x60, 0x60, 0x00, 0x00,
|
|
|
+ 0x20, 0x10, 0x08, 0x04, 0x02, 0x3E, 0x51, 0x49, 0x45, 0x3E, 0x00, 0x42, 0x7F, 0x40, 0x00,
|
|
|
+ 0x42, 0x61, 0x51, 0x49, 0x46, 0x21, 0x41, 0x45, 0x4B, 0x31, 0x18, 0x14, 0x12, 0x7F, 0x10,
|
|
|
+ 0x27, 0x45, 0x45, 0x45, 0x39, 0x3C, 0x4A, 0x49, 0x49, 0x30, 0x01, 0x71, 0x09, 0x05, 0x03,
|
|
|
+ 0x36, 0x49, 0x49, 0x49, 0x36, 0x06, 0x49, 0x49, 0x29, 0x1E, 0x00, 0x36, 0x36, 0x00, 0x00,
|
|
|
+ 0x00, 0x56, 0x36, 0x00, 0x00, 0x08, 0x14, 0x22, 0x41, 0x00, 0x14, 0x14, 0x14, 0x14, 0x14,
|
|
|
+ 0x00, 0x41, 0x22, 0x14, 0x08, 0x02, 0x01, 0x51, 0x09, 0x06, 0x32, 0x49, 0x59, 0x51, 0x3E,
|
|
|
+ 0x7C, 0x12, 0x11, 0x12, 0x7C, 0x7F, 0x49, 0x49, 0x49, 0x36, 0x3E, 0x41, 0x41, 0x41, 0x22,
|
|
|
+ 0x7F, 0x41, 0x41, 0x22, 0x1C, 0x7F, 0x49, 0x49, 0x49, 0x41, 0x7F, 0x09, 0x09, 0x09, 0x01,
|
|
|
+ 0x3E, 0x41, 0x49, 0x49, 0x7A, 0x7F, 0x08, 0x08, 0x08, 0x7F, 0x00, 0x41, 0x7F, 0x41, 0x00,
|
|
|
+ 0x20, 0x40, 0x41, 0x3F, 0x01, 0x7F, 0x08, 0x14, 0x22, 0x41, 0x7F, 0x40, 0x40, 0x40, 0x40,
|
|
|
+ 0x7F, 0x02, 0x0C, 0x02, 0x7F, 0x7F, 0x04, 0x08, 0x10, 0x7F, 0x3E, 0x41, 0x41, 0x41, 0x3E,
|
|
|
+ 0x7F, 0x09, 0x09, 0x09, 0x06, 0x3E, 0x41, 0x51, 0x21, 0x5E, 0x7F, 0x09, 0x19, 0x29, 0x46,
|
|
|
+ 0x46, 0x49, 0x49, 0x49, 0x31, 0x01, 0x01, 0x7F, 0x01, 0x01, 0x3F, 0x40, 0x40, 0x40, 0x3F,
|
|
|
+ 0x1F, 0x20, 0x40, 0x20, 0x1F, 0x3F, 0x40, 0x38, 0x40, 0x3F, 0x63, 0x14, 0x08, 0x14, 0x63,
|
|
|
+ 0x07, 0x08, 0x70, 0x08, 0x07, 0x61, 0x51, 0x49, 0x45, 0x43, 0x00, 0x7F, 0x41, 0x41, 0x00,
|
|
|
+ 0x02, 0x04, 0x08, 0x10, 0x20, 0x00, 0x41, 0x41, 0x7F, 0x00, 0x04, 0x02, 0x01, 0x02, 0x04,
|
|
|
+ 0x40, 0x40, 0x40, 0x40, 0x40, 0x00, 0x01, 0x02, 0x04, 0x00, 0x20, 0x54, 0x54, 0x54, 0x78,
|
|
|
+ 0x7F, 0x48, 0x44, 0x44, 0x38, 0x38, 0x44, 0x44, 0x44, 0x20, 0x38, 0x44, 0x44, 0x48, 0x7F,
|
|
|
+ 0x38, 0x54, 0x54, 0x54, 0x18, 0x08, 0x7E, 0x09, 0x01, 0x02, 0x18, 0xA4, 0xA4, 0xA4, 0x7C,
|
|
|
+ 0x7F, 0x08, 0x04, 0x04, 0x78, 0x00, 0x44, 0x7D, 0x40, 0x00, 0x40, 0x80, 0x84, 0x7D, 0x00,
|
|
|
+ 0x7F, 0x10, 0x28, 0x44, 0x00, 0x00, 0x41, 0x7F, 0x40, 0x00, 0x7C, 0x04, 0x18, 0x04, 0x78,
|
|
|
+ 0x7C, 0x08, 0x04, 0x04, 0x78, 0x38, 0x44, 0x44, 0x44, 0x38, 0xFC, 0x24, 0x24, 0x24, 0x18,
|
|
|
+ 0x18, 0x24, 0x24, 0x18, 0xFC, 0x7C, 0x08, 0x04, 0x04, 0x08, 0x48, 0x54, 0x54, 0x54, 0x20,
|
|
|
+ 0x04, 0x3F, 0x44, 0x40, 0x20, 0x3C, 0x40, 0x40, 0x20, 0x7C, 0x1C, 0x20, 0x40, 0x20, 0x1C,
|
|
|
+ 0x3C, 0x40, 0x30, 0x40, 0x3C, 0x44, 0x28, 0x10, 0x28, 0x44, 0x1C, 0xA0, 0xA0, 0xA0, 0x7C,
|
|
|
+ 0x44, 0x64, 0x54, 0x4C, 0x44, 0x08, 0x36, 0x41, 0x41, 0x00, 0x00, 0x00, 0x7F, 0x00, 0x00,
|
|
|
+ 0x00, 0x41, 0x41, 0x36, 0x08, 0x08, 0x04, 0x08, 0x10, 0x08, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
|
|
|
+};
|
|
|
+
|
|
|
+// OLED init settings
|
|
|
+const uint8_t OLED_INIT_CMD[] PROGMEM = {
|
|
|
+ 0xC8, 0xA1, // flip screen
|
|
|
+ 0xA8, 0x1F, // set multiplex ratio
|
|
|
+ 0xDA, 0x02, // set com pins hardware configuration
|
|
|
+ 0x8D, 0x14, // set DC-DC enable
|
|
|
+ 0xAF // display on
|
|
|
+};
|
|
|
+
|
|
|
+// OLED variables
|
|
|
+uint8_t OLED_x, OLED_y; // current cursor position
|
|
|
+
|
|
|
+// OLED init function
|
|
|
+void OLED_init(void) {
|
|
|
+ I2C_init(); // initialize I2C first
|
|
|
+ I2C_start(OLED_ADDR); // start transmission to OLED
|
|
|
+ I2C_write(OLED_CMD_MODE); // set command mode
|
|
|
+ for(uint8_t i = 0; i < OLED_INIT_LEN; i++)
|
|
|
+ I2C_write(pgm_read_byte(&OLED_INIT_CMD[i])); // send the command bytes
|
|
|
+ I2C_stop(); // stop transmission
|
|
|
+}
|
|
|
+
|
|
|
+// OLED set the cursor
|
|
|
+void OLED_setCursor(uint8_t xpos, uint8_t ypos) {
|
|
|
+ I2C_start(OLED_ADDR); // start transmission to OLED
|
|
|
+ I2C_write(OLED_CMD_MODE); // set command mode
|
|
|
+ I2C_write(xpos & 0x0F); // set low nibble of start column
|
|
|
+ I2C_write(0x10 | (xpos >> 4)); // set high nibble of start column
|
|
|
+ I2C_write(0xB0 | (ypos & 0x07)); // set start page
|
|
|
+ I2C_stop(); // stop transmission
|
|
|
+ OLED_x = xpos; OLED_y = ypos; // set the cursor variables
|
|
|
+}
|
|
|
+
|
|
|
+// OLED clear line
|
|
|
+void OLED_clearLine(uint8_t line) {
|
|
|
+ OLED_setCursor(0, line); // set cursor to line start
|
|
|
+ I2C_start(OLED_ADDR); // start transmission to OLED
|
|
|
+ I2C_write(OLED_DAT_MODE); // set data mode
|
|
|
+ for(uint8_t i=128; i; i--) I2C_write(0x00); // clear the line
|
|
|
+ I2C_stop(); // stop transmission
|
|
|
+}
|
|
|
+
|
|
|
+// OLED clear screen
|
|
|
+void OLED_clearScreen(void) {
|
|
|
+ for(uint8_t i=0; i<4; i++) // 4 lines
|
|
|
+ OLED_clearLine(i); // clear line
|
|
|
+}
|
|
|
+
|
|
|
+// OLED print a single character
|
|
|
+void OLED_printChar(char c) {
|
|
|
+ uint16_t ptr = c - 32; // character pointer
|
|
|
+ ptr += ptr << 2; // -> ptr = (ch - 32) * 5;
|
|
|
+ I2C_write(0x00); // write space between characters
|
|
|
+ for(uint8_t i=5 ; i; i--) I2C_write(pgm_read_byte(&OLED_FONT[ptr++]));
|
|
|
+ OLED_x += 6; // update cursor
|
|
|
+ if(OLED_x > 122) { // line end ?
|
|
|
+ I2C_stop(); // stop data transmission
|
|
|
+ OLED_setCursor(0,++OLED_y); // set next line start
|
|
|
+ I2C_start(OLED_ADDR); // start transmission to OLED
|
|
|
+ I2C_write(OLED_DAT_MODE); // set data mode
|
|
|
+ }
|
|
|
+}
|
|
|
+
|
|
|
+// OLED print a string from program memory
|
|
|
+void OLED_printPrg(const char* p) {
|
|
|
+ I2C_start(OLED_ADDR); // start transmission to OLED
|
|
|
+ I2C_write(OLED_DAT_MODE); // set data mode
|
|
|
+ char ch = pgm_read_byte(p); // read first character from program memory
|
|
|
+ while(ch) { // repeat until string terminator
|
|
|
+ OLED_printChar(ch); // print character on OLED
|
|
|
+ ch = pgm_read_byte(++p); // read next character
|
|
|
+ }
|
|
|
+ I2C_stop(); // stop transmission
|
|
|
+}
|
|
|
+
|
|
|
+// OLED convert byte nibble into hex character and prints it
|
|
|
+void OLED_printNibble(uint8_t nibble) {
|
|
|
+ char c;
|
|
|
+ if(nibble <= 9) c = '0' + nibble;
|
|
|
+ else c = 'A' + nibble - 10;
|
|
|
+ OLED_printChar(c);
|
|
|
+}
|
|
|
+
|
|
|
+// OLED print byte as hex
|
|
|
+void OLED_printHex(uint8_t value) {
|
|
|
+ I2C_start(OLED_ADDR); // start transmission to OLED
|
|
|
+ I2C_write(OLED_DAT_MODE); // set data mode
|
|
|
+ OLED_printNibble(value >> 4); // print high nibble
|
|
|
+ OLED_printNibble(value & 0x0F); // print low nibble
|
|
|
+ I2C_stop(); // stop transmission
|
|
|
+}
|