/* * cgminer SPI driver for Bitmine.ch A1 devices * * Copyright 2013, 2014 Zefir Kurtisi * * This program is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License as published by the Free * Software Foundation; either version 3 of the License, or (at your option) * any later version. See COPYING for more details. */ #include #include #include #include #include #include #include "spi-context.h" #include "logging.h" #include "miner.h" #include "util.h" #include "A1-common.h" #include "A1-board-selector.h" #include "A1-trimpot-mcp4x.h" /* one global board_selector and spi context is enough */ static struct board_selector *board_selector; static struct spi_ctx *spi; /********** work queue */ static bool wq_enqueue(struct work_queue *wq, struct work *work) { if (work == NULL) return false; struct work_ent *we = malloc(sizeof(*we)); assert(we != NULL); we->work = work; INIT_LIST_HEAD(&we->head); list_add_tail(&we->head, &wq->head); wq->num_elems++; return true; } static struct work *wq_dequeue(struct work_queue *wq) { if (wq == NULL) return NULL; if (wq->num_elems == 0) return NULL; struct work_ent *we; we = list_entry(wq->head.next, struct work_ent, head); struct work *work = we->work; list_del(&we->head); free(we); wq->num_elems--; return work; } /* * if not cooled sufficiently, communication fails and chip is temporary * disabled. we let it inactive for 30 seconds to cool down * * TODO: to be removed after bring up / test phase */ #define COOLDOWN_MS (30 * 1000) /* if after this number of retries a chip is still inaccessible, disable it */ #define DISABLE_CHIP_FAIL_THRESHOLD 3 enum A1_command { A1_BIST_START = 0x01, A1_BIST_FIX = 0x03, A1_RESET = 0x04, A1_WRITE_JOB = 0x07, A1_READ_RESULT = 0x08, A1_WRITE_REG = 0x09, A1_READ_REG = 0x0a, A1_READ_REG_RESP = 0x1a, }; /* * for now, we have one global config, defaulting values: * - ref_clk 16MHz / sys_clk 800MHz * - 2000 kHz SPI clock */ struct A1_config_options A1_config_options = { .ref_clk_khz = 16000, .sys_clk_khz = 800000, .spi_clk_khz = 2000, }; /* override values with --bitmine-a1-options ref:sys:spi: - use 0 for default */ static struct A1_config_options *parsed_config_options; /********** temporary helper for hexdumping SPI traffic */ static void applog_hexdump(char *prefix, uint8_t *buff, int len, int level) { static char line[256]; char *pos = line; int i; if (len < 1) return; pos += sprintf(pos, "%s: %d bytes:", prefix, len); for (i = 0; i < len; i++) { if (i > 0 && (i % 32) == 0) { applog(LOG_DEBUG, "%s", line); pos = line; pos += sprintf(pos, "\t"); } pos += sprintf(pos, "%.2X ", buff[i]); } applog(level, "%s", line); } static void hexdump(char *prefix, uint8_t *buff, int len) { applog_hexdump(prefix, buff, len, LOG_DEBUG); } static void hexdump_error(char *prefix, uint8_t *buff, int len) { applog_hexdump(prefix, buff, len, LOG_ERR); } static void flush_spi(struct A1_chain *a1) { memset(a1->spi_tx, 0, 64); spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, 64); } /********** upper layer SPI functions */ static uint8_t *exec_cmd(struct A1_chain *a1, uint8_t cmd, uint8_t chip_id, uint8_t *data, uint8_t len, uint8_t resp_len) { int tx_len = 4 + len; memset(a1->spi_tx, 0, tx_len); a1->spi_tx[0] = cmd; a1->spi_tx[1] = chip_id; if (data != NULL) memcpy(a1->spi_tx + 2, data, len); assert(spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len)); hexdump("send: TX", a1->spi_tx, tx_len); hexdump("send: RX", a1->spi_rx, tx_len); int poll_len = resp_len; if (chip_id == 0) { if (a1->num_chips == 0) { applog(LOG_INFO, "%d: unknown chips in chain, " "assuming 8", a1->chain_id); poll_len += 32; } poll_len += 4 * a1->num_chips; } else { poll_len += 4 * chip_id - 2; } assert(spi_transfer(a1->spi_ctx, NULL, a1->spi_rx + tx_len, poll_len)); hexdump("poll: RX", a1->spi_rx + tx_len, poll_len); int ack_len = tx_len + resp_len; int ack_pos = tx_len + poll_len - ack_len; hexdump("poll: ACK", a1->spi_rx + ack_pos, ack_len - 2); return (a1->spi_rx + ack_pos); } /********** A1 SPI commands */ static uint8_t *cmd_BIST_FIX_BCAST(struct A1_chain *a1) { uint8_t *ret = exec_cmd(a1, A1_BIST_FIX, 0x00, NULL, 0, 0); if (ret == NULL || ret[0] != A1_BIST_FIX) { applog(LOG_ERR, "%d: cmd_BIST_FIX_BCAST failed", a1->chain_id); return NULL; } return ret; } static uint8_t *cmd_RESET_BCAST(struct A1_chain *a1, uint8_t strategy) { static uint8_t s[2]; s[0] = strategy; s[1] = strategy; uint8_t *ret = exec_cmd(a1, A1_RESET, 0x00, s, 2, 0); if (ret == NULL || (ret[0] != A1_RESET && a1->num_chips != 0)) { applog(LOG_ERR, "%d: cmd_RESET_BCAST failed", a1->chain_id); return NULL; } return ret; } static uint8_t *cmd_READ_RESULT_BCAST(struct A1_chain *a1) { int tx_len = 8; memset(a1->spi_tx, 0, tx_len); a1->spi_tx[0] = A1_READ_RESULT; assert(spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len)); hexdump("send: TX", a1->spi_tx, tx_len); hexdump("send: RX", a1->spi_rx, tx_len); int poll_len = tx_len + 4 * a1->num_chips; assert(spi_transfer(a1->spi_ctx, NULL, a1->spi_rx + tx_len, poll_len)); hexdump("poll: RX", a1->spi_rx + tx_len, poll_len); uint8_t *scan = a1->spi_rx; int i; for (i = 0; i < poll_len; i += 2) { if ((scan[i] & 0x0f) == A1_READ_RESULT) return scan + i; } applog(LOG_ERR, "%d: cmd_READ_RESULT_BCAST failed", a1->chain_id); return NULL; } static uint8_t *cmd_WRITE_REG(struct A1_chain *a1, uint8_t chip, uint8_t *reg) { uint8_t *ret = exec_cmd(a1, A1_WRITE_REG, chip, reg, 6, 0); if (ret == NULL || ret[0] != A1_WRITE_REG) { applog(LOG_ERR, "%d: cmd_WRITE_REG failed", a1->chain_id); return NULL; } return ret; } static uint8_t *cmd_READ_REG(struct A1_chain *a1, uint8_t chip) { uint8_t *ret = exec_cmd(a1, A1_READ_REG, chip, NULL, 0, 6); if (ret == NULL || ret[0] != A1_READ_REG_RESP || ret[1] != chip) { applog(LOG_ERR, "%d: cmd_READ_REG chip %d failed", a1->chain_id, chip); return NULL; } memcpy(a1->spi_rx, ret, 8); return ret; } static uint8_t *cmd_WRITE_JOB(struct A1_chain *a1, uint8_t chip_id, uint8_t *job) { /* ensure we push the SPI command to the last chip in chain */ int tx_len = WRITE_JOB_LENGTH + 2; memcpy(a1->spi_tx, job, WRITE_JOB_LENGTH); memset(a1->spi_tx + WRITE_JOB_LENGTH, 0, tx_len - WRITE_JOB_LENGTH); assert(spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len)); hexdump("send: TX", a1->spi_tx, tx_len); hexdump("send: RX", a1->spi_rx, tx_len); int poll_len = 4 * chip_id - 2; assert(spi_transfer(a1->spi_ctx, NULL, a1->spi_rx + tx_len, poll_len)); hexdump("poll: RX", a1->spi_rx + tx_len, poll_len); int ack_len = tx_len; int ack_pos = tx_len + poll_len - ack_len; hexdump("poll: ACK", a1->spi_rx + ack_pos, tx_len); uint8_t *ret = a1->spi_rx + ack_pos; if (ret[0] != a1->spi_tx[0] || ret[1] != a1->spi_tx[1]){ applog(LOG_ERR, "%d: cmd_WRITE_JOB failed: " "0x%02x%02x/0x%02x%02x", a1->chain_id, ret[0], ret[1], a1->spi_tx[0], a1->spi_tx[1]); return NULL; } return ret; } /********** A1 low level functions */ #define MAX_PLL_WAIT_CYCLES 25 #define PLL_CYCLE_WAIT_TIME 40 static bool check_chip_pll_lock(struct A1_chain *a1, int chip_id, uint8_t *wr) { int n; for (n = 0; n < MAX_PLL_WAIT_CYCLES; n++) { /* check for PLL lock status */ if (cmd_READ_REG(a1, chip_id) && (a1->spi_rx[4] & 1) == 1) /* double check that we read back what we set before */ return wr[0] == a1->spi_rx[2] && wr[1] == a1->spi_rx[3]; cgsleep_ms(PLL_CYCLE_WAIT_TIME); } applog(LOG_ERR, "%d: chip %d failed PLL lock", a1->chain_id, chip_id); return false; } static uint8_t *get_pll_reg(struct A1_chain *a1, int ref_clock_khz, int sys_clock_khz) { /* * PLL parameters after: * sys_clk = (ref_clk * pll_fbdiv) / (pll_prediv * 2^(pll_postdiv - 1)) * * with a higher pll_postdiv being desired over a higher pll_prediv */ static uint8_t writereg[6] = { 0x00, 0x00, 0x21, 0x84, }; uint8_t pre_div = 1; uint8_t post_div = 1; uint32_t fb_div; int cid = a1->chain_id; applog(LOG_WARNING, "%d: Setting PLL: CLK_REF=%dMHz, SYS_CLK=%dMHz", cid, ref_clock_khz / 1000, sys_clock_khz / 1000); /* Euclidean search for GCD */ int a = ref_clock_khz; int b = sys_clock_khz; while (b != 0) { int h = a % b; a = b; b = h; } fb_div = sys_clock_khz / a; int n = ref_clock_khz / a; /* approximate multiplier if not exactly matchable */ if (fb_div > 511) { int f = fb_div / n; int m = (f < 32) ? 16 : (f < 64) ? 8 : (f < 128) ? 4 : (256 < 2) ? 2 : 1; fb_div = m * fb_div / n; n = m; } /* try to maximize post divider */ if ((n & 3) == 0) post_div = 3; else if ((n & 1) == 0) post_div = 2; else post_div = 1; /* remainder goes to pre_div */ pre_div = n / (1 << (post_div - 1)); /* correct pre_div overflow */ if (pre_div > 31) { fb_div = 31 * fb_div / pre_div; pre_div = 31; } writereg[0] = (post_div << 6) | (pre_div << 1) | (fb_div >> 8); writereg[1] = fb_div & 0xff; applog(LOG_WARNING, "%d: setting PLL: pre_div=%d, post_div=%d, " "fb_div=%d: 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x", cid, pre_div, post_div, fb_div, writereg[0], writereg[1], writereg[2], writereg[3], writereg[4], writereg[5]); return writereg; } static bool set_pll_config(struct A1_chain *a1, int chip_id, int ref_clock_khz, int sys_clock_khz) { uint8_t *writereg = get_pll_reg(a1, ref_clock_khz, sys_clock_khz); if (writereg == NULL) return false; if (!cmd_WRITE_REG(a1, chip_id, writereg)) return false; int from = (chip_id == 0) ? 0 : chip_id - 1; int to = (chip_id == 0) ? a1->num_active_chips : chip_id - 1; int i; for (i = from; i < to; i++) { int cid = i + 1; if (!check_chip_pll_lock(a1, chip_id, writereg)) { applog(LOG_ERR, "%d: chip %d failed PLL lock", a1->chain_id, cid); return false; } } return true; } #define WEAK_CHIP_THRESHOLD 30 #define BROKEN_CHIP_THRESHOLD 26 #define WEAK_CHIP_SYS_CLK (600 * 1000) #define BROKEN_CHIP_SYS_CLK (400 * 1000) static bool check_chip(struct A1_chain *a1, int i) { int chip_id = i + 1; int cid = a1->chain_id; if (!cmd_READ_REG(a1, chip_id)) { applog(LOG_WARNING, "%d: Failed to read register for " "chip %d -> disabling", cid, chip_id); a1->chips[i].num_cores = 0; a1->chips[i].disabled = 1; return false;; } a1->chips[i].num_cores = a1->spi_rx[7]; a1->num_cores += a1->chips[i].num_cores; applog(LOG_WARNING, "%d: Found chip %d with %d active cores", cid, chip_id, a1->chips[i].num_cores); if (a1->chips[i].num_cores < BROKEN_CHIP_THRESHOLD) { applog(LOG_WARNING, "%d: broken chip %d with %d active " "cores (threshold = %d)", cid, chip_id, a1->chips[i].num_cores, BROKEN_CHIP_THRESHOLD); set_pll_config(a1, chip_id, A1_config_options.ref_clk_khz, BROKEN_CHIP_SYS_CLK); cmd_READ_REG(a1, chip_id); hexdump_error("new.PLL", a1->spi_rx, 8); a1->chips[i].disabled = true; a1->num_cores -= a1->chips[i].num_cores; return false; } if (a1->chips[i].num_cores < WEAK_CHIP_THRESHOLD) { applog(LOG_WARNING, "%d: weak chip %d with %d active " "cores (threshold = %d)", cid, chip_id, a1->chips[i].num_cores, WEAK_CHIP_THRESHOLD); set_pll_config(a1, chip_id, A1_config_options.ref_clk_khz, WEAK_CHIP_SYS_CLK); cmd_READ_REG(a1, chip_id); hexdump_error("new.PLL", a1->spi_rx, 8); return false; } return true; } /* * BIST_START works only once after HW reset, on subsequent calls it * returns 0 as number of chips. */ static int chain_detect(struct A1_chain *a1) { int tx_len = 6; memset(a1->spi_tx, 0, tx_len); a1->spi_tx[0] = A1_BIST_START; a1->spi_tx[1] = 0; if (!spi_transfer(a1->spi_ctx, a1->spi_tx, a1->spi_rx, tx_len)) return 0; hexdump("TX", a1->spi_tx, 6); hexdump("RX", a1->spi_rx, 6); int i; int cid = a1->chain_id; int max_poll_words = MAX_CHAIN_LENGTH * 2; for(i = 1; i < max_poll_words; i++) { if (a1->spi_rx[0] == A1_BIST_START && a1->spi_rx[1] == 0) { spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2); hexdump("RX", a1->spi_rx, 2); uint8_t n = a1->spi_rx[1]; a1->num_chips = (i / 2) + 1; if (a1->num_chips != n) { applog(LOG_ERR, "%d: enumeration: %d <-> %d", cid, a1->num_chips, n); if (n != 0) a1->num_chips = n; } applog(LOG_WARNING, "%d: detected %d chips", cid, a1->num_chips); return a1->num_chips; } bool s = spi_transfer(a1->spi_ctx, NULL, a1->spi_rx, 2); hexdump("RX", a1->spi_rx, 2); if (!s) return 0; } applog(LOG_WARNING, "%d: no A1 chip-chain detected", cid); return 0; } /********** disable / re-enable related section (temporary for testing) */ static int get_current_ms(void) { cgtimer_t ct; cgtimer_time(&ct); return cgtimer_to_ms(&ct); } static bool is_chip_disabled(struct A1_chain *a1, uint8_t chip_id) { struct A1_chip *chip = &a1->chips[chip_id - 1]; return chip->disabled || chip->cooldown_begin != 0; } /* check and disable chip, remember time */ static void disable_chip(struct A1_chain *a1, uint8_t chip_id) { flush_spi(a1); struct A1_chip *chip = &a1->chips[chip_id - 1]; int cid = a1->chain_id; if (is_chip_disabled(a1, chip_id)) { applog(LOG_WARNING, "%d: chip %d already disabled", cid, chip_id); return; } applog(LOG_WARNING, "%d: temporary disabling chip %d", cid, chip_id); chip->cooldown_begin = get_current_ms(); } /* check if disabled chips can be re-enabled */ void check_disabled_chips(struct A1_chain *a1) { int i; int cid = a1->chain_id; for (i = 0; i < a1->num_active_chips; i++) { int chip_id = i + 1; struct A1_chip *chip = &a1->chips[i]; if (!is_chip_disabled(a1, chip_id)) continue; /* do not re-enable fully disabled chips */ if (chip->disabled) continue; if (chip->cooldown_begin + COOLDOWN_MS > get_current_ms()) continue; if (!cmd_READ_REG(a1, chip_id)) { chip->fail_count++; applog(LOG_WARNING, "%d: chip %d not yet working - %d", cid, chip_id, chip->fail_count); if (chip->fail_count > DISABLE_CHIP_FAIL_THRESHOLD) { applog(LOG_WARNING, "%d: completely disabling chip %d at %d", cid, chip_id, chip->fail_count); chip->disabled = true; a1->num_cores -= chip->num_cores; continue; } /* restart cooldown period */ chip->cooldown_begin = get_current_ms(); continue; } applog(LOG_WARNING, "%d: chip %d is working again", cid, chip_id); chip->cooldown_begin = 0; chip->fail_count = 0; } } /********** job creation and result evaluation */ uint32_t get_diff(double diff) { uint32_t n_bits; int shift = 29; double f = (double) 0x0000ffff / diff; while (f < (double) 0x00008000) { shift--; f *= 256.0; } while (f >= (double) 0x00800000) { shift++; f /= 256.0; } n_bits = (int) f + (shift << 24); return n_bits; } static uint8_t *create_job(uint8_t chip_id, uint8_t job_id, struct work *work) { static uint8_t job[WRITE_JOB_LENGTH] = { /* command */ 0x00, 0x00, /* midstate */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* wdata */ 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* start nonce */ 0x00, 0x00, 0x00, 0x00, /* difficulty 1 */ 0xff, 0xff, 0x00, 0x1d, /* end nonce */ 0xff, 0xff, 0xff, 0xff, }; uint8_t *midstate = work->midstate; uint8_t *wdata = work->data + 64; uint32_t *p1 = (uint32_t *) &job[34]; uint32_t *p2 = (uint32_t *) wdata; job[0] = (job_id << 4) | A1_WRITE_JOB; job[1] = chip_id; swab256(job + 2, midstate); p1[0] = bswap_32(p2[0]); p1[1] = bswap_32(p2[1]); p1[2] = bswap_32(p2[2]); #ifdef USE_REAL_DIFF p1[4] = get_diff(work->sdiff); #endif return job; } /* set work for given chip, returns true if a nonce range was finished */ static bool set_work(struct A1_chain *a1, uint8_t chip_id, struct work *work, uint8_t queue_states) { int cid = a1->chain_id; struct A1_chip *chip = &a1->chips[chip_id - 1]; bool retval = false; int job_id = chip->last_queued_id + 1; applog(LOG_INFO, "%d: queuing chip %d with job_id %d, state=0x%02x", cid, chip_id, job_id, queue_states); if (job_id == (queue_states & 0x0f) || job_id == (queue_states >> 4)) applog(LOG_WARNING, "%d: job overlap: %d, 0x%02x", cid, job_id, queue_states); if (chip->work[chip->last_queued_id] != NULL) { work_completed(a1->cgpu, chip->work[chip->last_queued_id]); chip->work[chip->last_queued_id] = NULL; retval = true; } uint8_t *jobdata = create_job(chip_id, job_id, work); if (!cmd_WRITE_JOB(a1, chip_id, jobdata)) { /* give back work */ work_completed(a1->cgpu, work); applog(LOG_ERR, "%d: failed to set work for chip %d.%d", cid, chip_id, job_id); disable_chip(a1, chip_id); } else { chip->work[chip->last_queued_id] = work; chip->last_queued_id++; chip->last_queued_id &= 3; } return retval; } static bool get_nonce(struct A1_chain *a1, uint8_t *nonce, uint8_t *chip, uint8_t *job_id) { uint8_t *ret = cmd_READ_RESULT_BCAST(a1); if (ret == NULL) return false; if (ret[1] == 0) { applog(LOG_DEBUG, "%d: output queue empty", a1->chain_id); return false; } *job_id = ret[0] >> 4; *chip = ret[1]; memcpy(nonce, ret + 2, 4); return true; } /* reset input work queues in chip chain */ static bool abort_work(struct A1_chain *a1) { /* drop jobs already queued: reset strategy 0xed */ return cmd_RESET_BCAST(a1, 0xed); } /********** driver interface */ void exit_A1_chain(struct A1_chain *a1) { if (a1 == NULL) return; free(a1->chips); a1->chips = NULL; a1->spi_ctx = NULL; free(a1); } struct A1_chain *init_A1_chain(struct spi_ctx *ctx, int chain_id) { int i; struct A1_chain *a1 = malloc(sizeof(*a1)); assert(a1 != NULL); applog(LOG_DEBUG, "%d: A1 init chain", chain_id); memset(a1, 0, sizeof(*a1)); a1->spi_ctx = ctx; a1->chain_id = chain_id; a1->num_chips = chain_detect(a1); if (a1->num_chips == 0) goto failure; applog(LOG_WARNING, "spidev%d.%d: %d: Found %d A1 chips", a1->spi_ctx->config.bus, a1->spi_ctx->config.cs_line, a1->chain_id, a1->num_chips); if (!set_pll_config(a1, 0, A1_config_options.ref_clk_khz, A1_config_options.sys_clk_khz)) goto failure; /* override max number of active chips if requested */ a1->num_active_chips = a1->num_chips; if (A1_config_options.override_chip_num > 0 && a1->num_chips > A1_config_options.override_chip_num) { a1->num_active_chips = A1_config_options.override_chip_num; applog(LOG_WARNING, "%d: limiting chain to %d chips", a1->chain_id, a1->num_active_chips); } a1->chips = calloc(a1->num_active_chips, sizeof(struct A1_chip)); assert (a1->chips != NULL); if (!cmd_BIST_FIX_BCAST(a1)) goto failure; for (i = 0; i < a1->num_active_chips; i++) check_chip(a1, i); applog(LOG_WARNING, "%d: found %d chips with total %d active cores", a1->chain_id, a1->num_active_chips, a1->num_cores); mutex_init(&a1->lock); INIT_LIST_HEAD(&a1->active_wq.head); return a1; failure: exit_A1_chain(a1); return NULL; } static bool detect_single_chain(void) { board_selector = (struct board_selector*)&dummy_board_selector; applog(LOG_WARNING, "A1: checking single chain"); struct A1_chain *a1 = init_A1_chain(spi, 0); if (a1 == NULL) return false; struct cgpu_info *cgpu = malloc(sizeof(*cgpu)); assert(cgpu != NULL); memset(cgpu, 0, sizeof(*cgpu)); cgpu->drv = &bitmineA1_drv; cgpu->name = "BitmineA1.SingleChain"; cgpu->threads = 1; cgpu->device_data = a1; a1->cgpu = cgpu; add_cgpu(cgpu); applog(LOG_WARNING, "Detected single A1 chain with %d chips / %d cores", a1->num_active_chips, a1->num_cores); return true; } bool detect_coincraft_desk(void) { static const uint8_t mcp4x_mapping[] = { 0x2c, 0x2b, 0x2a, 0x29, 0x28 }; board_selector = ccd_board_selector_init(); if (board_selector == NULL) { applog(LOG_INFO, "No CoinCrafd Desk backplane detected."); return false; } board_selector->reset_all(); int boards_detected = 0; int board_id; for (board_id = 0; board_id < CCD_MAX_CHAINS; board_id++) { uint8_t mcp_slave = mcp4x_mapping[board_id]; struct mcp4x *mcp = mcp4x_init(mcp_slave); if (mcp == NULL) continue; if (A1_config_options.wiper != 0) mcp->set_wiper(mcp, 0, A1_config_options.wiper); applog(LOG_WARNING, "checking board %d...", board_id); board_selector->select(board_id); struct A1_chain *a1 = init_A1_chain(spi, board_id); board_selector->release(); if (a1 == NULL) continue; struct cgpu_info *cgpu = malloc(sizeof(*cgpu)); assert(cgpu != NULL); memset(cgpu, 0, sizeof(*cgpu)); cgpu->drv = &bitmineA1_drv; cgpu->name = "BitmineA1.CCD"; cgpu->threads = 1; cgpu->device_data = a1; a1->cgpu = cgpu; add_cgpu(cgpu); boards_detected++; } if (boards_detected == 0) return false; applog(LOG_WARNING, "Detected CoinCraft Desk with %d boards", boards_detected); return true; } bool detect_coincraft_rig_v3(void) { board_selector = ccr_board_selector_init(); if (board_selector == NULL) return false; board_selector->reset_all(); int chains_detected = 0; int c; for (c = 0; c < CCR_MAX_CHAINS; c++) { applog(LOG_WARNING, "checking RIG chain %d...", c); if (!board_selector->select(c)) continue; struct A1_chain *a1 = init_A1_chain(spi, c); board_selector->release(); if (a1 == NULL) continue; if (A1_config_options.wiper != 0 && (c & 1) == 0) { struct mcp4x *mcp = mcp4x_init(0x28); if (mcp == NULL) { applog(LOG_ERR, "%d: Cant access poti", c); } else { mcp->set_wiper(mcp, 0, A1_config_options.wiper); mcp->set_wiper(mcp, 1, A1_config_options.wiper); mcp->exit(mcp); applog(LOG_WARNING, "%d: set wiper to 0x%02x", c, A1_config_options.wiper); } } struct cgpu_info *cgpu = malloc(sizeof(*cgpu)); assert(cgpu != NULL); memset(cgpu, 0, sizeof(*cgpu)); cgpu->drv = &bitmineA1_drv; cgpu->name = "BitmineA1.CCR"; cgpu->threads = 1; cgpu->device_data = a1; a1->cgpu = cgpu; add_cgpu(cgpu); chains_detected++; } if (chains_detected == 0) return false; applog(LOG_WARNING, "Detected CoinCraft Rig with %d chains", chains_detected); return true; } /* Probe SPI channel and register chip chain */ void A1_detect(bool hotplug) { /* no hotplug support for SPI */ if (hotplug) return; /* parse bimine-a1-options */ if (opt_bitmine_a1_options != NULL && parsed_config_options == NULL) { int ref_clk = 0; int sys_clk = 0; int spi_clk = 0; int override_chip_num = 0; int wiper = 0; sscanf(opt_bitmine_a1_options, "%d:%d:%d:%d:%d", &ref_clk, &sys_clk, &spi_clk, &override_chip_num, &wiper); if (ref_clk != 0) A1_config_options.ref_clk_khz = ref_clk; if (sys_clk != 0) { if (sys_clk < 100000) quit(1, "system clock must be above 100MHz"); A1_config_options.sys_clk_khz = sys_clk; } if (spi_clk != 0) A1_config_options.spi_clk_khz = spi_clk; if (override_chip_num != 0) A1_config_options.override_chip_num = override_chip_num; if (wiper != 0) A1_config_options.wiper = wiper; /* config options are global, scan them once */ parsed_config_options = &A1_config_options; } applog(LOG_DEBUG, "A1 detect"); /* register global SPI context */ struct spi_config cfg = default_spi_config; cfg.mode = SPI_MODE_1; cfg.speed = A1_config_options.spi_clk_khz * 1000; spi = spi_init(&cfg); if (spi == NULL) return; /* detect and register supported products */ if (detect_coincraft_desk()) return; if (detect_coincraft_rig_v3()) return; if (detect_single_chain()) return; /* release SPI context if no A1 products found */ spi_exit(spi); } #define TEMP_UPDATE_INT_MS 2000 static int64_t A1_scanwork(struct thr_info *thr) { int i; struct cgpu_info *cgpu = thr->cgpu; struct A1_chain *a1 = cgpu->device_data; int32_t nonce_ranges_processed = 0; if (a1->num_cores == 0) { cgpu->deven = DEV_DISABLED; return 0; } board_selector->select(a1->chain_id); applog(LOG_DEBUG, "A1 running scanwork"); uint32_t nonce; uint8_t chip_id; uint8_t job_id; bool work_updated = false; mutex_lock(&a1->lock); if (a1->last_temp_time + TEMP_UPDATE_INT_MS < get_current_ms()) { a1->temp = board_selector->get_temp(0); a1->last_temp_time = get_current_ms(); } int cid = a1->chain_id; /* poll queued results */ while (true) { if (!get_nonce(a1, (uint8_t*)&nonce, &chip_id, &job_id)) break; nonce = bswap_32(nonce); work_updated = true; if (chip_id < 1 || chip_id > a1->num_active_chips) { applog(LOG_WARNING, "%d: wrong chip_id %d", cid, chip_id); continue; } if (job_id < 1 && job_id > 4) { applog(LOG_WARNING, "%d: chip %d: result has wrong " "job_id %d", cid, chip_id, job_id); flush_spi(a1); continue; } struct A1_chip *chip = &a1->chips[chip_id - 1]; struct work *work = chip->work[job_id - 1]; if (work == NULL) { /* already been flushed => stale */ applog(LOG_WARNING, "%d: chip %d: stale nonce 0x%08x", cid, chip_id, nonce); chip->stales++; continue; } if (!submit_nonce(thr, work, nonce)) { applog(LOG_WARNING, "%d: chip %d: invalid nonce 0x%08x", cid, chip_id, nonce); chip->hw_errors++; /* add a penalty of a full nonce range on HW errors */ nonce_ranges_processed--; continue; } applog(LOG_DEBUG, "YEAH: %d: chip %d / job_id %d: nonce 0x%08x", cid, chip_id, job_id, nonce); chip->nonces_found++; } /* check for completed works */ for (i = a1->num_active_chips; i > 0; i--) { uint8_t c = i; if (is_chip_disabled(a1, c)) continue; if (!cmd_READ_REG(a1, c)) { disable_chip(a1, c); continue; } uint8_t qstate = a1->spi_rx[5] & 3; uint8_t qbuff = a1->spi_rx[6]; struct work *work; struct A1_chip *chip = &a1->chips[i - 1]; switch(qstate) { case 3: continue; case 2: applog(LOG_ERR, "%d: chip %d: invalid state = 2", cid, c); continue; case 1: /* fall through */ case 0: work_updated = true; work = wq_dequeue(&a1->active_wq); if (work == NULL) { applog(LOG_INFO, "%d: chip %d: work underflow", cid, c); break; } if (set_work(a1, c, work, qbuff)) { chip->nonce_ranges_done++; nonce_ranges_processed++; } applog(LOG_DEBUG, "%d: chip %d: job done: %d/%d/%d/%d", cid, c, chip->nonce_ranges_done, chip->nonces_found, chip->hw_errors, chip->stales); break; } } check_disabled_chips(a1); mutex_unlock(&a1->lock); board_selector->release(); if (nonce_ranges_processed < 0) nonce_ranges_processed = 0; if (nonce_ranges_processed != 0) { applog(LOG_DEBUG, "%d, nonces processed %d", cid, nonce_ranges_processed); } /* in case of no progress, prevent busy looping */ if (!work_updated) cgsleep_ms(40); return (int64_t)nonce_ranges_processed << 32; } /* queue two work items per chip in chain */ static bool A1_queue_full(struct cgpu_info *cgpu) { struct A1_chain *a1 = cgpu->device_data; int queue_full = false; mutex_lock(&a1->lock); applog(LOG_DEBUG, "%d, A1 running queue_full: %d/%d", a1->chain_id, a1->active_wq.num_elems, a1->num_active_chips); if (a1->active_wq.num_elems >= a1->num_active_chips * 2) queue_full = true; else wq_enqueue(&a1->active_wq, get_queued(cgpu)); mutex_unlock(&a1->lock); return queue_full; } static void A1_flush_work(struct cgpu_info *cgpu) { struct A1_chain *a1 = cgpu->device_data; int cid = a1->chain_id; board_selector->select(cid); applog(LOG_DEBUG, "%d: A1 running flushwork", cid); int i; mutex_lock(&a1->lock); /* stop chips hashing current work */ if (!abort_work(a1)) { applog(LOG_ERR, "%d: failed to abort work in chip chain!", cid); } /* flush the work chips were currently hashing */ for (i = 0; i < a1->num_active_chips; i++) { int j; struct A1_chip *chip = &a1->chips[i]; for (j = 0; j < 4; j++) { struct work *work = chip->work[j]; if (work == NULL) continue; applog(LOG_DEBUG, "%d: flushing chip %d, work %d: 0x%p", cid, i, j + 1, work); work_completed(cgpu, work); chip->work[j] = NULL; } chip->last_queued_id = 0; } /* flush queued work */ applog(LOG_DEBUG, "%d: flushing queued work...", cid); while (a1->active_wq.num_elems > 0) { struct work *work = wq_dequeue(&a1->active_wq); assert(work != NULL); work_completed(cgpu, work); } mutex_unlock(&a1->lock); board_selector->release(); } static void A1_get_statline_before(char *buf, size_t len, struct cgpu_info *cgpu) { struct A1_chain *a1 = cgpu->device_data; char temp[10]; if (a1->temp != 0) snprintf(temp, 9, "%2dC", a1->temp); tailsprintf(buf, len, " %2d:%2d/%3d %s", a1->chain_id, a1->num_active_chips, a1->num_cores, a1->temp == 0 ? " " : temp); } struct device_drv bitmineA1_drv = { .drv_id = DRIVER_bitmineA1, .dname = "BitmineA1", .name = "BA1", .drv_detect = A1_detect, .hash_work = hash_queued_work, .scanwork = A1_scanwork, .queue_full = A1_queue_full, .flush_work = A1_flush_work, .get_statline_before = A1_get_statline_before, };