|
@@ -116,7 +116,7 @@ typedef int mp_err;
|
|
#define MP_PREC 32 /* default digits of precision */
|
|
#define MP_PREC 32 /* default digits of precision */
|
|
#else
|
|
#else
|
|
#define MP_PREC 8 /* default digits of precision */
|
|
#define MP_PREC 8 /* default digits of precision */
|
|
- #endif
|
|
|
|
|
|
+ #endif
|
|
#endif
|
|
#endif
|
|
|
|
|
|
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
|
|
/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
|
|
@@ -274,8 +274,8 @@ static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
|
|
*tmpc++ &= MP_MASK;
|
|
*tmpc++ &= MP_MASK;
|
|
}
|
|
}
|
|
|
|
|
|
- /* now copy higher words if any, that is in A+B
|
|
|
|
- * if A or B has more digits add those in
|
|
|
|
|
|
+ /* now copy higher words if any, that is in A+B
|
|
|
|
+ * if A or B has more digits add those in
|
|
*/
|
|
*/
|
|
if (min != max) {
|
|
if (min != max) {
|
|
for (; i < max; i++) {
|
|
for (; i < max; i++) {
|
|
@@ -499,29 +499,29 @@ static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
|
|
#ifdef BN_MP_TOOM_MUL_C
|
|
#ifdef BN_MP_TOOM_MUL_C
|
|
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
|
|
if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
|
|
res = mp_toom_mul(a, b, c);
|
|
res = mp_toom_mul(a, b, c);
|
|
- } else
|
|
|
|
|
|
+ } else
|
|
#endif
|
|
#endif
|
|
#ifdef BN_MP_KARATSUBA_MUL_C
|
|
#ifdef BN_MP_KARATSUBA_MUL_C
|
|
/* use Karatsuba? */
|
|
/* use Karatsuba? */
|
|
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
|
if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
|
|
res = mp_karatsuba_mul (a, b, c);
|
|
res = mp_karatsuba_mul (a, b, c);
|
|
- } else
|
|
|
|
|
|
+ } else
|
|
#endif
|
|
#endif
|
|
{
|
|
{
|
|
/* can we use the fast multiplier?
|
|
/* can we use the fast multiplier?
|
|
*
|
|
*
|
|
- * The fast multiplier can be used if the output will
|
|
|
|
- * have less than MP_WARRAY digits and the number of
|
|
|
|
|
|
+ * The fast multiplier can be used if the output will
|
|
|
|
+ * have less than MP_WARRAY digits and the number of
|
|
* digits won't affect carry propagation
|
|
* digits won't affect carry propagation
|
|
*/
|
|
*/
|
|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
|
int digs = a->used + b->used + 1;
|
|
int digs = a->used + b->used + 1;
|
|
|
|
|
|
if ((digs < MP_WARRAY) &&
|
|
if ((digs < MP_WARRAY) &&
|
|
- MIN(a->used, b->used) <=
|
|
|
|
|
|
+ MIN(a->used, b->used) <=
|
|
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
res = fast_s_mp_mul_digs (a, b, c, digs);
|
|
res = fast_s_mp_mul_digs (a, b, c, digs);
|
|
- } else
|
|
|
|
|
|
+ } else
|
|
#endif
|
|
#endif
|
|
#ifdef BN_S_MP_MUL_DIGS_C
|
|
#ifdef BN_S_MP_MUL_DIGS_C
|
|
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
|
|
res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
|
|
@@ -629,7 +629,7 @@ static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
|
err = mp_exptmod(&tmpG, &tmpX, P, Y);
|
|
mp_clear_multi(&tmpG, &tmpX, NULL);
|
|
mp_clear_multi(&tmpG, &tmpX, NULL);
|
|
return err;
|
|
return err;
|
|
-#else
|
|
|
|
|
|
+#else
|
|
#error mp_exptmod would always fail
|
|
#error mp_exptmod would always fail
|
|
/* no invmod */
|
|
/* no invmod */
|
|
return MP_VAL;
|
|
return MP_VAL;
|
|
@@ -658,7 +658,7 @@ static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
|
|
dr = mp_reduce_is_2k(P) << 1;
|
|
dr = mp_reduce_is_2k(P) << 1;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
-
|
|
|
|
|
|
+
|
|
/* if the modulus is odd or dr != 0 use the montgomery method */
|
|
/* if the modulus is odd or dr != 0 use the montgomery method */
|
|
#ifdef BN_MP_EXPTMOD_FAST_C
|
|
#ifdef BN_MP_EXPTMOD_FAST_C
|
|
if (mp_isodd (P) == 1 || dr != 0) {
|
|
if (mp_isodd (P) == 1 || dr != 0) {
|
|
@@ -693,7 +693,7 @@ static int mp_cmp (mp_int * a, mp_int * b)
|
|
return MP_GT;
|
|
return MP_GT;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* compare digits */
|
|
/* compare digits */
|
|
if (a->sign == MP_NEG) {
|
|
if (a->sign == MP_NEG) {
|
|
/* if negative compare opposite direction */
|
|
/* if negative compare opposite direction */
|
|
@@ -779,7 +779,7 @@ static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
|
|
}
|
|
}
|
|
|
|
|
|
/* init temps */
|
|
/* init temps */
|
|
- if ((res = mp_init_multi(&x, &y, &u, &v,
|
|
|
|
|
|
+ if ((res = mp_init_multi(&x, &y, &u, &v,
|
|
&A, &B, &C, &D, NULL)) != MP_OKAY) {
|
|
&A, &B, &C, &D, NULL)) != MP_OKAY) {
|
|
return res;
|
|
return res;
|
|
}
|
|
}
|
|
@@ -906,14 +906,14 @@ top:
|
|
goto LBL_ERR;
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* too big */
|
|
/* too big */
|
|
while (mp_cmp_mag(&C, b) != MP_LT) {
|
|
while (mp_cmp_mag(&C, b) != MP_LT) {
|
|
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
|
if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
|
|
goto LBL_ERR;
|
|
goto LBL_ERR;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* C is now the inverse */
|
|
/* C is now the inverse */
|
|
mp_exch (&C, c);
|
|
mp_exch (&C, c);
|
|
res = MP_OKAY;
|
|
res = MP_OKAY;
|
|
@@ -933,7 +933,7 @@ static int mp_cmp_mag (mp_int * a, mp_int * b)
|
|
if (a->used > b->used) {
|
|
if (a->used > b->used) {
|
|
return MP_GT;
|
|
return MP_GT;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
if (a->used < b->used) {
|
|
if (a->used < b->used) {
|
|
return MP_LT;
|
|
return MP_LT;
|
|
}
|
|
}
|
|
@@ -1199,8 +1199,8 @@ static void mp_rshd (mp_int * a, int b)
|
|
/* top [offset into digits] */
|
|
/* top [offset into digits] */
|
|
top = a->dp + b;
|
|
top = a->dp + b;
|
|
|
|
|
|
- /* this is implemented as a sliding window where
|
|
|
|
- * the window is b-digits long and digits from
|
|
|
|
|
|
+ /* this is implemented as a sliding window where
|
|
|
|
+ * the window is b-digits long and digits from
|
|
* the top of the window are copied to the bottom
|
|
* the top of the window are copied to the bottom
|
|
*
|
|
*
|
|
* e.g.
|
|
* e.g.
|
|
@@ -1218,13 +1218,13 @@ static void mp_rshd (mp_int * a, int b)
|
|
*bottom++ = 0;
|
|
*bottom++ = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* remove excess digits */
|
|
/* remove excess digits */
|
|
a->used -= b;
|
|
a->used -= b;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-/* swap the elements of two integers, for cases where you can't simply swap the
|
|
|
|
|
|
+/* swap the elements of two integers, for cases where you can't simply swap the
|
|
* mp_int pointers around
|
|
* mp_int pointers around
|
|
*/
|
|
*/
|
|
static void mp_exch (mp_int * a, mp_int * b)
|
|
static void mp_exch (mp_int * a, mp_int * b)
|
|
@@ -1237,7 +1237,7 @@ static void mp_exch (mp_int * a, mp_int * b)
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-/* trim unused digits
|
|
|
|
|
|
+/* trim unused digits
|
|
*
|
|
*
|
|
* This is used to ensure that leading zero digits are
|
|
* This is used to ensure that leading zero digits are
|
|
* trimed and the leading "used" digit will be non-zero
|
|
* trimed and the leading "used" digit will be non-zero
|
|
@@ -1298,7 +1298,7 @@ static int mp_grow (mp_int * a, int size)
|
|
|
|
|
|
|
|
|
|
#ifdef BN_MP_ABS_C
|
|
#ifdef BN_MP_ABS_C
|
|
-/* b = |a|
|
|
|
|
|
|
+/* b = |a|
|
|
*
|
|
*
|
|
* Simple function copies the input and fixes the sign to positive
|
|
* Simple function copies the input and fixes the sign to positive
|
|
*/
|
|
*/
|
|
@@ -1434,7 +1434,7 @@ static int mp_mul_2d (mp_int * a, int b, mp_int * c)
|
|
/* set the carry to the carry bits of the current word */
|
|
/* set the carry to the carry bits of the current word */
|
|
r = rr;
|
|
r = rr;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* set final carry */
|
|
/* set final carry */
|
|
if (r != 0) {
|
|
if (r != 0) {
|
|
c->dp[(c->used)++] = r;
|
|
c->dp[(c->used)++] = r;
|
|
@@ -1446,7 +1446,7 @@ static int mp_mul_2d (mp_int * a, int b, mp_int * c)
|
|
|
|
|
|
|
|
|
|
#ifdef BN_MP_INIT_MULTI_C
|
|
#ifdef BN_MP_INIT_MULTI_C
|
|
-static int mp_init_multi(mp_int *mp, ...)
|
|
|
|
|
|
+static int mp_init_multi(mp_int *mp, ...)
|
|
{
|
|
{
|
|
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
|
mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
|
|
int n = 0; /* Number of ok inits */
|
|
int n = 0; /* Number of ok inits */
|
|
@@ -1460,11 +1460,11 @@ static int mp_init_multi(mp_int *mp, ...)
|
|
succeeded in init-ing, then return error.
|
|
succeeded in init-ing, then return error.
|
|
*/
|
|
*/
|
|
va_list clean_args;
|
|
va_list clean_args;
|
|
-
|
|
|
|
|
|
+
|
|
/* end the current list */
|
|
/* end the current list */
|
|
va_end(args);
|
|
va_end(args);
|
|
-
|
|
|
|
- /* now start cleaning up */
|
|
|
|
|
|
+
|
|
|
|
+ /* now start cleaning up */
|
|
cur_arg = mp;
|
|
cur_arg = mp;
|
|
va_start(clean_args, mp);
|
|
va_start(clean_args, mp);
|
|
while (n--) {
|
|
while (n--) {
|
|
@@ -1484,7 +1484,7 @@ static int mp_init_multi(mp_int *mp, ...)
|
|
|
|
|
|
|
|
|
|
#ifdef BN_MP_CLEAR_MULTI_C
|
|
#ifdef BN_MP_CLEAR_MULTI_C
|
|
-static void mp_clear_multi(mp_int *mp, ...)
|
|
|
|
|
|
+static void mp_clear_multi(mp_int *mp, ...)
|
|
{
|
|
{
|
|
mp_int* next_mp = mp;
|
|
mp_int* next_mp = mp;
|
|
va_list args;
|
|
va_list args;
|
|
@@ -1558,7 +1558,7 @@ static int mp_count_bits (mp_int * a)
|
|
|
|
|
|
/* get number of digits and add that */
|
|
/* get number of digits and add that */
|
|
r = (a->used - 1) * DIGIT_BIT;
|
|
r = (a->used - 1) * DIGIT_BIT;
|
|
-
|
|
|
|
|
|
+
|
|
/* take the last digit and count the bits in it */
|
|
/* take the last digit and count the bits in it */
|
|
q = a->dp[a->used - 1];
|
|
q = a->dp[a->used - 1];
|
|
while (q > ((mp_digit) 0)) {
|
|
while (q > ((mp_digit) 0)) {
|
|
@@ -1628,7 +1628,7 @@ static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
}
|
|
}
|
|
return res;
|
|
return res;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* init our temps */
|
|
/* init our temps */
|
|
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
|
|
if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL)) != MP_OKAY) {
|
|
return res;
|
|
return res;
|
|
@@ -1638,7 +1638,7 @@ static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
mp_set(&tq, 1);
|
|
mp_set(&tq, 1);
|
|
n = mp_count_bits(a) - mp_count_bits(b);
|
|
n = mp_count_bits(a) - mp_count_bits(b);
|
|
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
|
|
if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
|
|
- ((res = mp_abs(b, &tb)) != MP_OKAY) ||
|
|
|
|
|
|
+ ((res = mp_abs(b, &tb)) != MP_OKAY) ||
|
|
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
|
|
((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
|
|
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
|
|
((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
|
|
goto LBL_ERR;
|
|
goto LBL_ERR;
|
|
@@ -1675,17 +1675,17 @@ LBL_ERR:
|
|
|
|
|
|
#else
|
|
#else
|
|
|
|
|
|
-/* integer signed division.
|
|
|
|
|
|
+/* integer signed division.
|
|
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
|
* c*b + d == a [e.g. a/b, c=quotient, d=remainder]
|
|
* HAC pp.598 Algorithm 14.20
|
|
* HAC pp.598 Algorithm 14.20
|
|
*
|
|
*
|
|
- * Note that the description in HAC is horribly
|
|
|
|
- * incomplete. For example, it doesn't consider
|
|
|
|
- * the case where digits are removed from 'x' in
|
|
|
|
- * the inner loop. It also doesn't consider the
|
|
|
|
|
|
+ * Note that the description in HAC is horribly
|
|
|
|
+ * incomplete. For example, it doesn't consider
|
|
|
|
+ * the case where digits are removed from 'x' in
|
|
|
|
+ * the inner loop. It also doesn't consider the
|
|
* case that y has fewer than three digits, etc..
|
|
* case that y has fewer than three digits, etc..
|
|
*
|
|
*
|
|
- * The overall algorithm is as described as
|
|
|
|
|
|
+ * The overall algorithm is as described as
|
|
* 14.20 from HAC but fixed to treat these cases.
|
|
* 14.20 from HAC but fixed to treat these cases.
|
|
*/
|
|
*/
|
|
static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
@@ -1775,7 +1775,7 @@ static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
continue;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
|
|
- /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
|
|
|
|
|
+ /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
|
|
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
* otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
|
|
if (x.dp[i] == y.dp[t]) {
|
|
if (x.dp[i] == y.dp[t]) {
|
|
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
|
q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
|
|
@@ -1789,10 +1789,10 @@ static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
|
q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
|
|
}
|
|
}
|
|
|
|
|
|
- /* while (q{i-t-1} * (yt * b + y{t-1})) >
|
|
|
|
- xi * b**2 + xi-1 * b + xi-2
|
|
|
|
-
|
|
|
|
- do q{i-t-1} -= 1;
|
|
|
|
|
|
+ /* while (q{i-t-1} * (yt * b + y{t-1})) >
|
|
|
|
+ xi * b**2 + xi-1 * b + xi-2
|
|
|
|
+
|
|
|
|
+ do q{i-t-1} -= 1;
|
|
*/
|
|
*/
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
|
q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
|
|
do {
|
|
do {
|
|
@@ -1843,10 +1843,10 @@ static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
- /* now q is the quotient and x is the remainder
|
|
|
|
- * [which we have to normalize]
|
|
|
|
|
|
+ /* now q is the quotient and x is the remainder
|
|
|
|
+ * [which we have to normalize]
|
|
*/
|
|
*/
|
|
-
|
|
|
|
|
|
+
|
|
/* get sign before writing to c */
|
|
/* get sign before writing to c */
|
|
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
|
x.sign = x.used == 0 ? MP_ZPOS : a->sign;
|
|
|
|
|
|
@@ -1914,7 +1914,7 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
|
|
/* init M array */
|
|
/* init M array */
|
|
/* init first cell */
|
|
/* init first cell */
|
|
if ((err = mp_init(&M[1])) != MP_OKAY) {
|
|
if ((err = mp_init(&M[1])) != MP_OKAY) {
|
|
- return err;
|
|
|
|
|
|
+ return err;
|
|
}
|
|
}
|
|
|
|
|
|
/* now init the second half of the array */
|
|
/* now init the second half of the array */
|
|
@@ -1932,7 +1932,7 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
|
|
if ((err = mp_init (&mu)) != MP_OKAY) {
|
|
if ((err = mp_init (&mu)) != MP_OKAY) {
|
|
goto LBL_M;
|
|
goto LBL_M;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
if (redmode == 0) {
|
|
if (redmode == 0) {
|
|
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
|
if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
|
|
goto LBL_MU;
|
|
goto LBL_MU;
|
|
@@ -1943,22 +1943,22 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
|
|
goto LBL_MU;
|
|
goto LBL_MU;
|
|
}
|
|
}
|
|
redux = mp_reduce_2k_l;
|
|
redux = mp_reduce_2k_l;
|
|
- }
|
|
|
|
|
|
+ }
|
|
|
|
|
|
/* create M table
|
|
/* create M table
|
|
*
|
|
*
|
|
- * The M table contains powers of the base,
|
|
|
|
|
|
+ * The M table contains powers of the base,
|
|
* e.g. M[x] = G**x mod P
|
|
* e.g. M[x] = G**x mod P
|
|
*
|
|
*
|
|
- * The first half of the table is not
|
|
|
|
|
|
+ * The first half of the table is not
|
|
* computed though accept for M[0] and M[1]
|
|
* computed though accept for M[0] and M[1]
|
|
*/
|
|
*/
|
|
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
|
if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
|
|
goto LBL_MU;
|
|
goto LBL_MU;
|
|
}
|
|
}
|
|
|
|
|
|
- /* compute the value at M[1<<(winsize-1)] by squaring
|
|
|
|
- * M[1] (winsize-1) times
|
|
|
|
|
|
+ /* compute the value at M[1<<(winsize-1)] by squaring
|
|
|
|
+ * M[1] (winsize-1) times
|
|
*/
|
|
*/
|
|
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
goto LBL_MU;
|
|
goto LBL_MU;
|
|
@@ -1966,7 +1966,7 @@ static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int red
|
|
|
|
|
|
for (x = 0; x < (winsize - 1); x++) {
|
|
for (x = 0; x < (winsize - 1); x++) {
|
|
/* square it */
|
|
/* square it */
|
|
- if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
|
|
|
|
|
+ if ((err = mp_sqr (&M[1 << (winsize - 1)],
|
|
&M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
&M[1 << (winsize - 1)])) != MP_OKAY) {
|
|
goto LBL_MU;
|
|
goto LBL_MU;
|
|
}
|
|
}
|
|
@@ -2117,18 +2117,18 @@ static int mp_sqr (mp_int * a, mp_int * b)
|
|
if (a->used >= TOOM_SQR_CUTOFF) {
|
|
if (a->used >= TOOM_SQR_CUTOFF) {
|
|
res = mp_toom_sqr(a, b);
|
|
res = mp_toom_sqr(a, b);
|
|
/* Karatsuba? */
|
|
/* Karatsuba? */
|
|
- } else
|
|
|
|
|
|
+ } else
|
|
#endif
|
|
#endif
|
|
#ifdef BN_MP_KARATSUBA_SQR_C
|
|
#ifdef BN_MP_KARATSUBA_SQR_C
|
|
if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
|
if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
|
res = mp_karatsuba_sqr (a, b);
|
|
res = mp_karatsuba_sqr (a, b);
|
|
- } else
|
|
|
|
|
|
+ } else
|
|
#endif
|
|
#endif
|
|
{
|
|
{
|
|
#ifdef BN_FAST_S_MP_SQR_C
|
|
#ifdef BN_FAST_S_MP_SQR_C
|
|
/* can we use the fast comba multiplier? */
|
|
/* can we use the fast comba multiplier? */
|
|
- if ((a->used * 2 + 1) < MP_WARRAY &&
|
|
|
|
- a->used <
|
|
|
|
|
|
+ if ((a->used * 2 + 1) < MP_WARRAY &&
|
|
|
|
+ a->used <
|
|
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
|
(1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
|
|
res = fast_s_mp_sqr (a, b);
|
|
res = fast_s_mp_sqr (a, b);
|
|
} else
|
|
} else
|
|
@@ -2145,7 +2145,7 @@ if (a->used >= KARATSUBA_SQR_CUTOFF) {
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-/* reduces a modulo n where n is of the form 2**p - d
|
|
|
|
|
|
+/* reduces a modulo n where n is of the form 2**p - d
|
|
This differs from reduce_2k since "d" can be larger
|
|
This differs from reduce_2k since "d" can be larger
|
|
than a single digit.
|
|
than a single digit.
|
|
*/
|
|
*/
|
|
@@ -2153,33 +2153,33 @@ static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
|
|
{
|
|
{
|
|
mp_int q;
|
|
mp_int q;
|
|
int p, res;
|
|
int p, res;
|
|
-
|
|
|
|
|
|
+
|
|
if ((res = mp_init(&q)) != MP_OKAY) {
|
|
if ((res = mp_init(&q)) != MP_OKAY) {
|
|
return res;
|
|
return res;
|
|
}
|
|
}
|
|
-
|
|
|
|
- p = mp_count_bits(n);
|
|
|
|
|
|
+
|
|
|
|
+ p = mp_count_bits(n);
|
|
top:
|
|
top:
|
|
/* q = a/2**p, a = a mod 2**p */
|
|
/* q = a/2**p, a = a mod 2**p */
|
|
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
|
if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
|
|
goto ERR;
|
|
goto ERR;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* q = q * d */
|
|
/* q = q * d */
|
|
- if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
|
|
|
|
|
|
+ if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
|
|
goto ERR;
|
|
goto ERR;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
/* a = a + q */
|
|
/* a = a + q */
|
|
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
|
if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
|
|
goto ERR;
|
|
goto ERR;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
if (mp_cmp_mag(a, n) != MP_LT) {
|
|
if (mp_cmp_mag(a, n) != MP_LT) {
|
|
s_mp_sub(a, n, a);
|
|
s_mp_sub(a, n, a);
|
|
goto top;
|
|
goto top;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
ERR:
|
|
ERR:
|
|
mp_clear(&q);
|
|
mp_clear(&q);
|
|
return res;
|
|
return res;
|
|
@@ -2191,26 +2191,26 @@ static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
|
|
{
|
|
{
|
|
int res;
|
|
int res;
|
|
mp_int tmp;
|
|
mp_int tmp;
|
|
-
|
|
|
|
|
|
+
|
|
if ((res = mp_init(&tmp)) != MP_OKAY) {
|
|
if ((res = mp_init(&tmp)) != MP_OKAY) {
|
|
return res;
|
|
return res;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
|
|
if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
|
|
goto ERR;
|
|
goto ERR;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
|
|
if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
|
|
goto ERR;
|
|
goto ERR;
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
ERR:
|
|
ERR:
|
|
mp_clear(&tmp);
|
|
mp_clear(&tmp);
|
|
return res;
|
|
return res;
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-/* computes a = 2**b
|
|
|
|
|
|
+/* computes a = 2**b
|
|
*
|
|
*
|
|
* Simple algorithm which zeroes the int, grows it then just sets one bit
|
|
* Simple algorithm which zeroes the int, grows it then just sets one bit
|
|
* as required.
|
|
* as required.
|
|
@@ -2243,7 +2243,7 @@ static int mp_2expt (mp_int * a, int b)
|
|
static int mp_reduce_setup (mp_int * a, mp_int * b)
|
|
static int mp_reduce_setup (mp_int * a, mp_int * b)
|
|
{
|
|
{
|
|
int res;
|
|
int res;
|
|
-
|
|
|
|
|
|
+
|
|
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
|
if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
|
|
return res;
|
|
return res;
|
|
}
|
|
}
|
|
@@ -2251,7 +2251,7 @@ static int mp_reduce_setup (mp_int * a, mp_int * b)
|
|
}
|
|
}
|
|
|
|
|
|
|
|
|
|
-/* reduces x mod m, assumes 0 < x < m**2, mu is
|
|
|
|
|
|
+/* reduces x mod m, assumes 0 < x < m**2, mu is
|
|
* precomputed via mp_reduce_setup.
|
|
* precomputed via mp_reduce_setup.
|
|
* From HAC pp.604 Algorithm 14.42
|
|
* From HAC pp.604 Algorithm 14.42
|
|
*/
|
|
*/
|
|
@@ -2266,7 +2266,7 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
}
|
|
}
|
|
|
|
|
|
/* q1 = x / b**(k-1) */
|
|
/* q1 = x / b**(k-1) */
|
|
- mp_rshd (&q, um - 1);
|
|
|
|
|
|
+ mp_rshd (&q, um - 1);
|
|
|
|
|
|
/* according to HAC this optimization is ok */
|
|
/* according to HAC this optimization is ok */
|
|
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
|
|
if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
|
|
@@ -2282,8 +2282,8 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
|
|
if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
|
|
goto CLEANUP;
|
|
goto CLEANUP;
|
|
}
|
|
}
|
|
-#else
|
|
|
|
- {
|
|
|
|
|
|
+#else
|
|
|
|
+ {
|
|
#error mp_reduce would always fail
|
|
#error mp_reduce would always fail
|
|
res = MP_VAL;
|
|
res = MP_VAL;
|
|
goto CLEANUP;
|
|
goto CLEANUP;
|
|
@@ -2292,7 +2292,7 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
}
|
|
}
|
|
|
|
|
|
/* q3 = q2 / b**(k+1) */
|
|
/* q3 = q2 / b**(k+1) */
|
|
- mp_rshd (&q, um + 1);
|
|
|
|
|
|
+ mp_rshd (&q, um + 1);
|
|
|
|
|
|
/* x = x mod b**(k+1), quick (no division) */
|
|
/* x = x mod b**(k+1), quick (no division) */
|
|
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
|
if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
|
|
@@ -2326,7 +2326,7 @@ static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
|
|
goto CLEANUP;
|
|
goto CLEANUP;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
-
|
|
|
|
|
|
+
|
|
CLEANUP:
|
|
CLEANUP:
|
|
mp_clear (&q);
|
|
mp_clear (&q);
|
|
|
|
|
|
@@ -2335,7 +2335,7 @@ CLEANUP:
|
|
|
|
|
|
|
|
|
|
/* multiplies |a| * |b| and only computes up to digs digits of result
|
|
/* multiplies |a| * |b| and only computes up to digs digits of result
|
|
- * HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
|
|
|
|
|
+ * HAC pp. 595, Algorithm 14.12 Modified so you can control how
|
|
* many digits of output are created.
|
|
* many digits of output are created.
|
|
*/
|
|
*/
|
|
static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
@@ -2349,7 +2349,7 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
|
/* can we use the fast multiplier? */
|
|
/* can we use the fast multiplier? */
|
|
if (((digs) < MP_WARRAY) &&
|
|
if (((digs) < MP_WARRAY) &&
|
|
- MIN (a->used, b->used) <
|
|
|
|
|
|
+ MIN (a->used, b->used) <
|
|
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
(1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
return fast_s_mp_mul_digs (a, b, c, digs);
|
|
return fast_s_mp_mul_digs (a, b, c, digs);
|
|
}
|
|
}
|
|
@@ -2372,10 +2372,10 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
/* setup some aliases */
|
|
/* setup some aliases */
|
|
/* copy of the digit from a used within the nested loop */
|
|
/* copy of the digit from a used within the nested loop */
|
|
tmpx = a->dp[ix];
|
|
tmpx = a->dp[ix];
|
|
-
|
|
|
|
|
|
+
|
|
/* an alias for the destination shifted ix places */
|
|
/* an alias for the destination shifted ix places */
|
|
tmpt = t.dp + ix;
|
|
tmpt = t.dp + ix;
|
|
-
|
|
|
|
|
|
+
|
|
/* an alias for the digits of b */
|
|
/* an alias for the digits of b */
|
|
tmpy = b->dp;
|
|
tmpy = b->dp;
|
|
|
|
|
|
@@ -2409,15 +2409,15 @@ static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
|
#ifdef BN_FAST_S_MP_MUL_DIGS_C
|
|
/* Fast (comba) multiplier
|
|
/* Fast (comba) multiplier
|
|
*
|
|
*
|
|
- * This is the fast column-array [comba] multiplier. It is
|
|
|
|
- * designed to compute the columns of the product first
|
|
|
|
- * then handle the carries afterwards. This has the effect
|
|
|
|
|
|
+ * This is the fast column-array [comba] multiplier. It is
|
|
|
|
+ * designed to compute the columns of the product first
|
|
|
|
+ * then handle the carries afterwards. This has the effect
|
|
* of making the nested loops that compute the columns very
|
|
* of making the nested loops that compute the columns very
|
|
* simple and schedulable on super-scalar processors.
|
|
* simple and schedulable on super-scalar processors.
|
|
*
|
|
*
|
|
- * This has been modified to produce a variable number of
|
|
|
|
- * digits of output so if say only a half-product is required
|
|
|
|
- * you don't have to compute the upper half (a feature
|
|
|
|
|
|
+ * This has been modified to produce a variable number of
|
|
|
|
+ * digits of output so if say only a half-product is required
|
|
|
|
+ * you don't have to compute the upper half (a feature
|
|
* required for fast Barrett reduction).
|
|
* required for fast Barrett reduction).
|
|
*
|
|
*
|
|
* Based on Algorithm 14.12 on pp.595 of HAC.
|
|
* Based on Algorithm 14.12 on pp.595 of HAC.
|
|
@@ -2441,7 +2441,7 @@ static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
|
|
|
|
/* clear the carry */
|
|
/* clear the carry */
|
|
_W = 0;
|
|
_W = 0;
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
int tx, ty;
|
|
int tx, ty;
|
|
int iy;
|
|
int iy;
|
|
mp_digit *tmpx, *tmpy;
|
|
mp_digit *tmpx, *tmpy;
|
|
@@ -2454,7 +2454,7 @@ static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
|
|
tmpx = a->dp + tx;
|
|
tmpx = a->dp + tx;
|
|
tmpy = b->dp + ty;
|
|
tmpy = b->dp + ty;
|
|
|
|
|
|
- /* this is the number of times the loop will iterrate, essentially
|
|
|
|
|
|
+ /* this is the number of times the loop will iterrate, essentially
|
|
while (tx++ < a->used && ty-- >= 0) { ... }
|
|
while (tx++ < a->used && ty-- >= 0) { ... }
|
|
*/
|
|
*/
|
|
iy = MIN(a->used-tx, ty+1);
|
|
iy = MIN(a->used-tx, ty+1);
|
|
@@ -2501,8 +2501,8 @@ static int mp_init_size (mp_int * a, int size)
|
|
int x;
|
|
int x;
|
|
|
|
|
|
/* pad size so there are always extra digits */
|
|
/* pad size so there are always extra digits */
|
|
- size += (MP_PREC * 2) - (size % MP_PREC);
|
|
|
|
-
|
|
|
|
|
|
+ size += (MP_PREC * 2) - (size % MP_PREC);
|
|
|
|
+
|
|
/* alloc mem */
|
|
/* alloc mem */
|
|
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
|
|
a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
|
|
if (a->dp == NULL) {
|
|
if (a->dp == NULL) {
|
|
@@ -2556,7 +2556,7 @@ static int s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
|
|
|
/* alias for where to store the results */
|
|
/* alias for where to store the results */
|
|
tmpt = t.dp + (2*ix + 1);
|
|
tmpt = t.dp + (2*ix + 1);
|
|
-
|
|
|
|
|
|
+
|
|
for (iy = ix + 1; iy < pa; iy++) {
|
|
for (iy = ix + 1; iy < pa; iy++) {
|
|
/* first calculate the product */
|
|
/* first calculate the product */
|
|
r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
|
|
r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
|
|
@@ -2863,24 +2863,24 @@ static int mp_mul_2(mp_int * a, mp_int * b)
|
|
|
|
|
|
/* alias for source */
|
|
/* alias for source */
|
|
tmpa = a->dp;
|
|
tmpa = a->dp;
|
|
-
|
|
|
|
|
|
+
|
|
/* alias for dest */
|
|
/* alias for dest */
|
|
tmpb = b->dp;
|
|
tmpb = b->dp;
|
|
|
|
|
|
/* carry */
|
|
/* carry */
|
|
r = 0;
|
|
r = 0;
|
|
for (x = 0; x < a->used; x++) {
|
|
for (x = 0; x < a->used; x++) {
|
|
-
|
|
|
|
- /* get what will be the *next* carry bit from the
|
|
|
|
- * MSB of the current digit
|
|
|
|
|
|
+
|
|
|
|
+ /* get what will be the *next* carry bit from the
|
|
|
|
+ * MSB of the current digit
|
|
*/
|
|
*/
|
|
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
|
rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
|
|
-
|
|
|
|
|
|
+
|
|
/* now shift up this digit, add in the carry [from the previous] */
|
|
/* now shift up this digit, add in the carry [from the previous] */
|
|
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
|
*tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
|
|
-
|
|
|
|
- /* copy the carry that would be from the source
|
|
|
|
- * digit into the next iteration
|
|
|
|
|
|
+
|
|
|
|
+ /* copy the carry that would be from the source
|
|
|
|
+ * digit into the next iteration
|
|
*/
|
|
*/
|
|
r = rr;
|
|
r = rr;
|
|
}
|
|
}
|
|
@@ -2892,8 +2892,8 @@ static int mp_mul_2(mp_int * a, mp_int * b)
|
|
++(b->used);
|
|
++(b->used);
|
|
}
|
|
}
|
|
|
|
|
|
- /* now zero any excess digits on the destination
|
|
|
|
- * that we didn't write to
|
|
|
|
|
|
+ /* now zero any excess digits on the destination
|
|
|
|
+ * that we didn't write to
|
|
*/
|
|
*/
|
|
tmpb = b->dp + b->used;
|
|
tmpb = b->dp + b->used;
|
|
for (x = b->used; x < oldused; x++) {
|
|
for (x = b->used; x < oldused; x++) {
|
|
@@ -3011,7 +3011,7 @@ static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int
|
|
|
|
|
|
/* determine and setup reduction code */
|
|
/* determine and setup reduction code */
|
|
if (redmode == 0) {
|
|
if (redmode == 0) {
|
|
-#ifdef BN_MP_MONTGOMERY_SETUP_C
|
|
|
|
|
|
+#ifdef BN_MP_MONTGOMERY_SETUP_C
|
|
/* now setup montgomery */
|
|
/* now setup montgomery */
|
|
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
|
if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
|
|
goto LBL_M;
|
|
goto LBL_M;
|
|
@@ -3026,7 +3026,7 @@ static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int
|
|
if (((P->used * 2 + 1) < MP_WARRAY) &&
|
|
if (((P->used * 2 + 1) < MP_WARRAY) &&
|
|
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
|
|
redux = fast_mp_montgomery_reduce;
|
|
redux = fast_mp_montgomery_reduce;
|
|
- } else
|
|
|
|
|
|
+ } else
|
|
#endif
|
|
#endif
|
|
{
|
|
{
|
|
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
|
#ifdef BN_MP_MONTGOMERY_REDUCE_C
|
|
@@ -3077,7 +3077,7 @@ static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int
|
|
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
|
if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
|
|
goto LBL_RES;
|
|
goto LBL_RES;
|
|
}
|
|
}
|
|
-#else
|
|
|
|
|
|
+#else
|
|
err = MP_VAL;
|
|
err = MP_VAL;
|
|
goto LBL_RES;
|
|
goto LBL_RES;
|
|
#endif
|
|
#endif
|
|
@@ -3245,10 +3245,10 @@ LBL_M:
|
|
|
|
|
|
#ifdef BN_FAST_S_MP_SQR_C
|
|
#ifdef BN_FAST_S_MP_SQR_C
|
|
/* the jist of squaring...
|
|
/* the jist of squaring...
|
|
- * you do like mult except the offset of the tmpx [one that
|
|
|
|
- * starts closer to zero] can't equal the offset of tmpy.
|
|
|
|
|
|
+ * you do like mult except the offset of the tmpx [one that
|
|
|
|
+ * starts closer to zero] can't equal the offset of tmpy.
|
|
* So basically you set up iy like before then you min it with
|
|
* So basically you set up iy like before then you min it with
|
|
- * (ty-tx) so that it never happens. You double all those
|
|
|
|
|
|
+ * (ty-tx) so that it never happens. You double all those
|
|
* you add in the inner loop
|
|
* you add in the inner loop
|
|
|
|
|
|
After that loop you do the squares and add them in.
|
|
After that loop you do the squares and add them in.
|
|
@@ -3270,7 +3270,7 @@ static int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
|
|
|
|
|
/* number of output digits to produce */
|
|
/* number of output digits to produce */
|
|
W1 = 0;
|
|
W1 = 0;
|
|
- for (ix = 0; ix < pa; ix++) {
|
|
|
|
|
|
+ for (ix = 0; ix < pa; ix++) {
|
|
int tx, ty, iy;
|
|
int tx, ty, iy;
|
|
mp_word _W;
|
|
mp_word _W;
|
|
mp_digit *tmpy;
|
|
mp_digit *tmpy;
|
|
@@ -3291,7 +3291,7 @@ static int fast_s_mp_sqr (mp_int * a, mp_int * b)
|
|
*/
|
|
*/
|
|
iy = MIN(a->used-tx, ty+1);
|
|
iy = MIN(a->used-tx, ty+1);
|
|
|
|
|
|
- /* now for squaring tx can never equal ty
|
|
|
|
|
|
+ /* now for squaring tx can never equal ty
|
|
* we halve the distance since they approach at a rate of 2x
|
|
* we halve the distance since they approach at a rate of 2x
|
|
* and we have to round because odd cases need to be executed
|
|
* and we have to round because odd cases need to be executed
|
|
*/
|
|
*/
|