ap.c 40 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "ap/dfs.h"
  28. #include "wps/wps.h"
  29. #include "common/ieee802_11_defs.h"
  30. #include "config_ssid.h"
  31. #include "config.h"
  32. #include "wpa_supplicant_i.h"
  33. #include "driver_i.h"
  34. #include "p2p_supplicant.h"
  35. #include "ap.h"
  36. #include "ap/sta_info.h"
  37. #include "notify.h"
  38. #ifdef CONFIG_WPS
  39. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  40. #endif /* CONFIG_WPS */
  41. #ifdef CONFIG_IEEE80211N
  42. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  43. struct wpa_ssid *ssid,
  44. struct hostapd_config *conf,
  45. struct hostapd_hw_modes *mode)
  46. {
  47. #ifdef CONFIG_P2P
  48. u8 center_chan = 0;
  49. u8 channel = conf->channel;
  50. #endif /* CONFIG_P2P */
  51. if (!conf->secondary_channel)
  52. goto no_vht;
  53. /* Use the maximum oper channel width if it's given. */
  54. if (ssid->max_oper_chwidth)
  55. conf->vht_oper_chwidth = ssid->max_oper_chwidth;
  56. ieee80211_freq_to_chan(ssid->vht_center_freq2,
  57. &conf->vht_oper_centr_freq_seg1_idx);
  58. if (!ssid->p2p_group) {
  59. if (!ssid->vht_center_freq1 ||
  60. conf->vht_oper_chwidth == VHT_CHANWIDTH_USE_HT)
  61. goto no_vht;
  62. ieee80211_freq_to_chan(ssid->vht_center_freq1,
  63. &conf->vht_oper_centr_freq_seg0_idx);
  64. return;
  65. }
  66. #ifdef CONFIG_P2P
  67. switch (conf->vht_oper_chwidth) {
  68. case VHT_CHANWIDTH_80MHZ:
  69. case VHT_CHANWIDTH_80P80MHZ:
  70. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  71. break;
  72. case VHT_CHANWIDTH_160MHZ:
  73. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  74. break;
  75. default:
  76. /*
  77. * conf->vht_oper_chwidth might not be set for non-P2P GO cases,
  78. * try oper_cwidth 160 MHz first then VHT 80 MHz, if 160 MHz is
  79. * not supported.
  80. */
  81. conf->vht_oper_chwidth = VHT_CHANWIDTH_160MHZ;
  82. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  83. if (!center_chan) {
  84. conf->vht_oper_chwidth = VHT_CHANWIDTH_80MHZ;
  85. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode,
  86. channel);
  87. }
  88. break;
  89. }
  90. if (!center_chan)
  91. goto no_vht;
  92. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  93. return;
  94. #endif /* CONFIG_P2P */
  95. no_vht:
  96. conf->vht_oper_centr_freq_seg0_idx =
  97. conf->channel + conf->secondary_channel * 2;
  98. conf->vht_oper_chwidth = VHT_CHANWIDTH_USE_HT;
  99. }
  100. #endif /* CONFIG_IEEE80211N */
  101. int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  102. struct wpa_ssid *ssid,
  103. struct hostapd_config *conf)
  104. {
  105. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  106. &conf->channel);
  107. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  108. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  109. ssid->frequency);
  110. return -1;
  111. }
  112. /* TODO: enable HT40 if driver supports it;
  113. * drop to 11b if driver does not support 11g */
  114. #ifdef CONFIG_IEEE80211N
  115. /*
  116. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  117. * and a mask of allowed capabilities within conf->ht_capab.
  118. * Using default config settings for: conf->ht_op_mode_fixed,
  119. * conf->secondary_channel, conf->require_ht
  120. */
  121. if (wpa_s->hw.modes) {
  122. struct hostapd_hw_modes *mode = NULL;
  123. int i, no_ht = 0;
  124. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  125. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  126. mode = &wpa_s->hw.modes[i];
  127. break;
  128. }
  129. }
  130. #ifdef CONFIG_HT_OVERRIDES
  131. if (ssid->disable_ht)
  132. ssid->ht = 0;
  133. #endif /* CONFIG_HT_OVERRIDES */
  134. if (!ssid->ht) {
  135. conf->ieee80211n = 0;
  136. conf->ht_capab = 0;
  137. no_ht = 1;
  138. }
  139. if (!no_ht && mode && mode->ht_capab) {
  140. conf->ieee80211n = 1;
  141. #ifdef CONFIG_P2P
  142. if (ssid->p2p_group &&
  143. conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  144. (mode->ht_capab &
  145. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  146. ssid->ht40)
  147. conf->secondary_channel =
  148. wpas_p2p_get_ht40_mode(wpa_s, mode,
  149. conf->channel);
  150. #endif /* CONFIG_P2P */
  151. if (!ssid->p2p_group &&
  152. (mode->ht_capab &
  153. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET))
  154. conf->secondary_channel = ssid->ht40;
  155. if (conf->secondary_channel)
  156. conf->ht_capab |=
  157. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  158. /*
  159. * white-list capabilities that won't cause issues
  160. * to connecting stations, while leaving the current
  161. * capabilities intact (currently disabled SMPS).
  162. */
  163. conf->ht_capab |= mode->ht_capab &
  164. (HT_CAP_INFO_GREEN_FIELD |
  165. HT_CAP_INFO_SHORT_GI20MHZ |
  166. HT_CAP_INFO_SHORT_GI40MHZ |
  167. HT_CAP_INFO_RX_STBC_MASK |
  168. HT_CAP_INFO_TX_STBC |
  169. HT_CAP_INFO_MAX_AMSDU_SIZE);
  170. if (mode->vht_capab && ssid->vht) {
  171. conf->ieee80211ac = 1;
  172. conf->vht_capab |= mode->vht_capab;
  173. wpas_conf_ap_vht(wpa_s, ssid, conf, mode);
  174. }
  175. }
  176. }
  177. if (conf->secondary_channel) {
  178. struct wpa_supplicant *iface;
  179. for (iface = wpa_s->global->ifaces; iface; iface = iface->next)
  180. {
  181. if (iface == wpa_s ||
  182. iface->wpa_state < WPA_AUTHENTICATING ||
  183. (int) iface->assoc_freq != ssid->frequency)
  184. continue;
  185. /*
  186. * Do not allow 40 MHz co-ex PRI/SEC switch to force us
  187. * to change our PRI channel since we have an existing,
  188. * concurrent connection on that channel and doing
  189. * multi-channel concurrency is likely to cause more
  190. * harm than using different PRI/SEC selection in
  191. * environment with multiple BSSes on these two channels
  192. * with mixed 20 MHz or PRI channel selection.
  193. */
  194. conf->no_pri_sec_switch = 1;
  195. }
  196. }
  197. #endif /* CONFIG_IEEE80211N */
  198. return 0;
  199. }
  200. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  201. struct wpa_ssid *ssid,
  202. struct hostapd_config *conf)
  203. {
  204. struct hostapd_bss_config *bss = conf->bss[0];
  205. conf->driver = wpa_s->driver;
  206. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  207. if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf))
  208. return -1;
  209. if (ssid->pbss > 1) {
  210. wpa_printf(MSG_ERROR, "Invalid pbss value(%d) for AP mode",
  211. ssid->pbss);
  212. return -1;
  213. }
  214. bss->pbss = ssid->pbss;
  215. #ifdef CONFIG_ACS
  216. if (ssid->acs) {
  217. /* Setting channel to 0 in order to enable ACS */
  218. conf->channel = 0;
  219. wpa_printf(MSG_DEBUG, "Use automatic channel selection");
  220. }
  221. #endif /* CONFIG_ACS */
  222. if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) {
  223. conf->ieee80211h = 1;
  224. conf->ieee80211d = 1;
  225. conf->country[0] = wpa_s->conf->country[0];
  226. conf->country[1] = wpa_s->conf->country[1];
  227. conf->country[2] = ' ';
  228. }
  229. #ifdef CONFIG_P2P
  230. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  231. (ssid->mode == WPAS_MODE_P2P_GO ||
  232. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  233. /* Remove 802.11b rates from supported and basic rate sets */
  234. int *list = os_malloc(4 * sizeof(int));
  235. if (list) {
  236. list[0] = 60;
  237. list[1] = 120;
  238. list[2] = 240;
  239. list[3] = -1;
  240. }
  241. conf->basic_rates = list;
  242. list = os_malloc(9 * sizeof(int));
  243. if (list) {
  244. list[0] = 60;
  245. list[1] = 90;
  246. list[2] = 120;
  247. list[3] = 180;
  248. list[4] = 240;
  249. list[5] = 360;
  250. list[6] = 480;
  251. list[7] = 540;
  252. list[8] = -1;
  253. }
  254. conf->supported_rates = list;
  255. }
  256. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  257. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  258. if (ssid->p2p_group) {
  259. os_memcpy(bss->ip_addr_go, wpa_s->p2pdev->conf->ip_addr_go, 4);
  260. os_memcpy(bss->ip_addr_mask, wpa_s->p2pdev->conf->ip_addr_mask,
  261. 4);
  262. os_memcpy(bss->ip_addr_start,
  263. wpa_s->p2pdev->conf->ip_addr_start, 4);
  264. os_memcpy(bss->ip_addr_end, wpa_s->p2pdev->conf->ip_addr_end,
  265. 4);
  266. }
  267. #endif /* CONFIG_P2P */
  268. if (ssid->ssid_len == 0) {
  269. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  270. return -1;
  271. }
  272. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  273. bss->ssid.ssid_len = ssid->ssid_len;
  274. bss->ssid.ssid_set = 1;
  275. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  276. if (ssid->auth_alg)
  277. bss->auth_algs = ssid->auth_alg;
  278. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  279. bss->wpa = ssid->proto;
  280. if (ssid->key_mgmt == DEFAULT_KEY_MGMT)
  281. bss->wpa_key_mgmt = WPA_KEY_MGMT_PSK;
  282. else
  283. bss->wpa_key_mgmt = ssid->key_mgmt;
  284. bss->wpa_pairwise = ssid->pairwise_cipher;
  285. if (ssid->psk_set) {
  286. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  287. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  288. if (bss->ssid.wpa_psk == NULL)
  289. return -1;
  290. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  291. bss->ssid.wpa_psk->group = 1;
  292. bss->ssid.wpa_psk_set = 1;
  293. } else if (ssid->passphrase) {
  294. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  295. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  296. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  297. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  298. int i;
  299. for (i = 0; i < NUM_WEP_KEYS; i++) {
  300. if (ssid->wep_key_len[i] == 0)
  301. continue;
  302. wep->key[i] = os_memdup(ssid->wep_key[i],
  303. ssid->wep_key_len[i]);
  304. if (wep->key[i] == NULL)
  305. return -1;
  306. wep->len[i] = ssid->wep_key_len[i];
  307. }
  308. wep->idx = ssid->wep_tx_keyidx;
  309. wep->keys_set = 1;
  310. }
  311. if (ssid->ap_max_inactivity)
  312. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  313. if (ssid->dtim_period)
  314. bss->dtim_period = ssid->dtim_period;
  315. else if (wpa_s->conf->dtim_period)
  316. bss->dtim_period = wpa_s->conf->dtim_period;
  317. if (ssid->beacon_int)
  318. conf->beacon_int = ssid->beacon_int;
  319. else if (wpa_s->conf->beacon_int)
  320. conf->beacon_int = wpa_s->conf->beacon_int;
  321. #ifdef CONFIG_P2P
  322. if (ssid->mode == WPAS_MODE_P2P_GO ||
  323. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) {
  324. if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) {
  325. wpa_printf(MSG_INFO,
  326. "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it",
  327. wpa_s->conf->p2p_go_ctwindow,
  328. conf->beacon_int);
  329. conf->p2p_go_ctwindow = 0;
  330. } else {
  331. conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow;
  332. }
  333. }
  334. #endif /* CONFIG_P2P */
  335. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  336. bss->rsn_pairwise = bss->wpa_pairwise;
  337. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  338. bss->rsn_pairwise);
  339. if (bss->wpa && bss->ieee802_1x)
  340. bss->ssid.security_policy = SECURITY_WPA;
  341. else if (bss->wpa)
  342. bss->ssid.security_policy = SECURITY_WPA_PSK;
  343. else if (bss->ieee802_1x) {
  344. int cipher = WPA_CIPHER_NONE;
  345. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  346. bss->ssid.wep.default_len = bss->default_wep_key_len;
  347. if (bss->default_wep_key_len)
  348. cipher = bss->default_wep_key_len >= 13 ?
  349. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  350. bss->wpa_group = cipher;
  351. bss->wpa_pairwise = cipher;
  352. bss->rsn_pairwise = cipher;
  353. } else if (bss->ssid.wep.keys_set) {
  354. int cipher = WPA_CIPHER_WEP40;
  355. if (bss->ssid.wep.len[0] >= 13)
  356. cipher = WPA_CIPHER_WEP104;
  357. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  358. bss->wpa_group = cipher;
  359. bss->wpa_pairwise = cipher;
  360. bss->rsn_pairwise = cipher;
  361. } else {
  362. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  363. bss->wpa_group = WPA_CIPHER_NONE;
  364. bss->wpa_pairwise = WPA_CIPHER_NONE;
  365. bss->rsn_pairwise = WPA_CIPHER_NONE;
  366. }
  367. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  368. (bss->wpa_group == WPA_CIPHER_CCMP ||
  369. bss->wpa_group == WPA_CIPHER_GCMP ||
  370. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  371. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  372. /*
  373. * Strong ciphers do not need frequent rekeying, so increase
  374. * the default GTK rekeying period to 24 hours.
  375. */
  376. bss->wpa_group_rekey = 86400;
  377. }
  378. #ifdef CONFIG_IEEE80211W
  379. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  380. bss->ieee80211w = ssid->ieee80211w;
  381. #endif /* CONFIG_IEEE80211W */
  382. #ifdef CONFIG_WPS
  383. /*
  384. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  385. * require user interaction to actually use it. Only the internal
  386. * Registrar is supported.
  387. */
  388. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  389. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  390. goto no_wps;
  391. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  392. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  393. !(bss->wpa & 2)))
  394. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  395. * configuration */
  396. if (ssid->wps_disabled)
  397. goto no_wps;
  398. bss->eap_server = 1;
  399. if (!ssid->ignore_broadcast_ssid)
  400. bss->wps_state = 2;
  401. bss->ap_setup_locked = 2;
  402. if (wpa_s->conf->config_methods)
  403. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  404. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  405. WPS_DEV_TYPE_LEN);
  406. if (wpa_s->conf->device_name) {
  407. bss->device_name = os_strdup(wpa_s->conf->device_name);
  408. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  409. }
  410. if (wpa_s->conf->manufacturer)
  411. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  412. if (wpa_s->conf->model_name)
  413. bss->model_name = os_strdup(wpa_s->conf->model_name);
  414. if (wpa_s->conf->model_number)
  415. bss->model_number = os_strdup(wpa_s->conf->model_number);
  416. if (wpa_s->conf->serial_number)
  417. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  418. if (is_nil_uuid(wpa_s->conf->uuid))
  419. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  420. else
  421. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  422. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  423. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  424. if (ssid->eap.fragment_size != DEFAULT_FRAGMENT_SIZE)
  425. bss->fragment_size = ssid->eap.fragment_size;
  426. no_wps:
  427. #endif /* CONFIG_WPS */
  428. if (wpa_s->max_stations &&
  429. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  430. bss->max_num_sta = wpa_s->max_stations;
  431. else
  432. bss->max_num_sta = wpa_s->conf->max_num_sta;
  433. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  434. if (wpa_s->conf->ap_vendor_elements) {
  435. bss->vendor_elements =
  436. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  437. }
  438. bss->ftm_responder = wpa_s->conf->ftm_responder;
  439. bss->ftm_initiator = wpa_s->conf->ftm_initiator;
  440. return 0;
  441. }
  442. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  443. {
  444. #ifdef CONFIG_P2P
  445. struct wpa_supplicant *wpa_s = ctx;
  446. const struct ieee80211_mgmt *mgmt;
  447. mgmt = (const struct ieee80211_mgmt *) buf;
  448. if (len < IEEE80211_HDRLEN + 1)
  449. return;
  450. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  451. return;
  452. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  453. mgmt->u.action.category,
  454. buf + IEEE80211_HDRLEN + 1,
  455. len - IEEE80211_HDRLEN - 1, freq);
  456. #endif /* CONFIG_P2P */
  457. }
  458. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  459. union wps_event_data *data)
  460. {
  461. #ifdef CONFIG_P2P
  462. struct wpa_supplicant *wpa_s = ctx;
  463. if (event == WPS_EV_FAIL) {
  464. struct wps_event_fail *fail = &data->fail;
  465. if (wpa_s->p2pdev && wpa_s->p2pdev != wpa_s &&
  466. wpa_s == wpa_s->global->p2p_group_formation) {
  467. /*
  468. * src/ap/wps_hostapd.c has already sent this on the
  469. * main interface, so only send on the parent interface
  470. * here if needed.
  471. */
  472. wpa_msg(wpa_s->p2pdev, MSG_INFO, WPS_EVENT_FAIL
  473. "msg=%d config_error=%d",
  474. fail->msg, fail->config_error);
  475. }
  476. wpas_p2p_wps_failed(wpa_s, fail);
  477. }
  478. #endif /* CONFIG_P2P */
  479. }
  480. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  481. int authorized, const u8 *p2p_dev_addr)
  482. {
  483. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  484. }
  485. #ifdef CONFIG_P2P
  486. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  487. const u8 *psk, size_t psk_len)
  488. {
  489. struct wpa_supplicant *wpa_s = ctx;
  490. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  491. return;
  492. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  493. }
  494. #endif /* CONFIG_P2P */
  495. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  496. {
  497. #ifdef CONFIG_P2P
  498. struct wpa_supplicant *wpa_s = ctx;
  499. const struct ieee80211_mgmt *mgmt;
  500. mgmt = (const struct ieee80211_mgmt *) buf;
  501. if (len < IEEE80211_HDRLEN + 1)
  502. return -1;
  503. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  504. mgmt->u.action.category,
  505. buf + IEEE80211_HDRLEN + 1,
  506. len - IEEE80211_HDRLEN - 1, freq);
  507. #endif /* CONFIG_P2P */
  508. return 0;
  509. }
  510. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  511. const u8 *bssid, const u8 *ie, size_t ie_len,
  512. int ssi_signal)
  513. {
  514. struct wpa_supplicant *wpa_s = ctx;
  515. unsigned int freq = 0;
  516. if (wpa_s->ap_iface)
  517. freq = wpa_s->ap_iface->freq;
  518. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  519. freq, ssi_signal);
  520. }
  521. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  522. const u8 *uuid_e)
  523. {
  524. struct wpa_supplicant *wpa_s = ctx;
  525. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  526. }
  527. static void wpas_ap_configured_cb(void *ctx)
  528. {
  529. struct wpa_supplicant *wpa_s = ctx;
  530. #ifdef CONFIG_ACS
  531. if (wpa_s->current_ssid && wpa_s->current_ssid->acs)
  532. wpa_s->assoc_freq = wpa_s->ap_iface->freq;
  533. #endif /* CONFIG_ACS */
  534. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  535. if (wpa_s->ap_configured_cb)
  536. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  537. wpa_s->ap_configured_cb_data);
  538. }
  539. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  540. struct wpa_ssid *ssid)
  541. {
  542. struct wpa_driver_associate_params params;
  543. struct hostapd_iface *hapd_iface;
  544. struct hostapd_config *conf;
  545. size_t i;
  546. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  547. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  548. return -1;
  549. }
  550. wpa_supplicant_ap_deinit(wpa_s);
  551. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  552. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  553. os_memset(&params, 0, sizeof(params));
  554. params.ssid = ssid->ssid;
  555. params.ssid_len = ssid->ssid_len;
  556. switch (ssid->mode) {
  557. case WPAS_MODE_AP:
  558. case WPAS_MODE_P2P_GO:
  559. case WPAS_MODE_P2P_GROUP_FORMATION:
  560. params.mode = IEEE80211_MODE_AP;
  561. break;
  562. default:
  563. return -1;
  564. }
  565. if (ssid->frequency == 0)
  566. ssid->frequency = 2462; /* default channel 11 */
  567. params.freq.freq = ssid->frequency;
  568. params.wpa_proto = ssid->proto;
  569. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  570. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  571. else
  572. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  573. params.key_mgmt_suite = wpa_s->key_mgmt;
  574. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  575. 1);
  576. if (wpa_s->pairwise_cipher < 0) {
  577. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  578. "cipher.");
  579. return -1;
  580. }
  581. params.pairwise_suite = wpa_s->pairwise_cipher;
  582. params.group_suite = params.pairwise_suite;
  583. #ifdef CONFIG_P2P
  584. if (ssid->mode == WPAS_MODE_P2P_GO ||
  585. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  586. params.p2p = 1;
  587. #endif /* CONFIG_P2P */
  588. if (wpa_s->p2pdev->set_ap_uapsd)
  589. params.uapsd = wpa_s->p2pdev->ap_uapsd;
  590. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  591. params.uapsd = 1; /* mandatory for P2P GO */
  592. else
  593. params.uapsd = -1;
  594. if (ieee80211_is_dfs(params.freq.freq))
  595. params.freq.freq = 0; /* set channel after CAC */
  596. if (params.p2p)
  597. wpa_drv_get_ext_capa(wpa_s, WPA_IF_P2P_GO);
  598. else
  599. wpa_drv_get_ext_capa(wpa_s, WPA_IF_AP_BSS);
  600. if (wpa_drv_associate(wpa_s, &params) < 0) {
  601. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  602. return -1;
  603. }
  604. wpa_s->ap_iface = hapd_iface = hostapd_alloc_iface();
  605. if (hapd_iface == NULL)
  606. return -1;
  607. hapd_iface->owner = wpa_s;
  608. hapd_iface->drv_flags = wpa_s->drv_flags;
  609. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  610. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  611. hapd_iface->extended_capa = wpa_s->extended_capa;
  612. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  613. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  614. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  615. if (conf == NULL) {
  616. wpa_supplicant_ap_deinit(wpa_s);
  617. return -1;
  618. }
  619. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  620. wpa_s->conf->wmm_ac_params,
  621. sizeof(wpa_s->conf->wmm_ac_params));
  622. if (params.uapsd > 0) {
  623. conf->bss[0]->wmm_enabled = 1;
  624. conf->bss[0]->wmm_uapsd = 1;
  625. }
  626. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  627. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  628. wpa_supplicant_ap_deinit(wpa_s);
  629. return -1;
  630. }
  631. #ifdef CONFIG_P2P
  632. if (ssid->mode == WPAS_MODE_P2P_GO)
  633. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  634. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  635. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  636. P2P_GROUP_FORMATION;
  637. #endif /* CONFIG_P2P */
  638. hapd_iface->num_bss = conf->num_bss;
  639. hapd_iface->bss = os_calloc(conf->num_bss,
  640. sizeof(struct hostapd_data *));
  641. if (hapd_iface->bss == NULL) {
  642. wpa_supplicant_ap_deinit(wpa_s);
  643. return -1;
  644. }
  645. for (i = 0; i < conf->num_bss; i++) {
  646. hapd_iface->bss[i] =
  647. hostapd_alloc_bss_data(hapd_iface, conf,
  648. conf->bss[i]);
  649. if (hapd_iface->bss[i] == NULL) {
  650. wpa_supplicant_ap_deinit(wpa_s);
  651. return -1;
  652. }
  653. hapd_iface->bss[i]->msg_ctx = wpa_s;
  654. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->p2pdev;
  655. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  656. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  657. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  658. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  659. hostapd_register_probereq_cb(hapd_iface->bss[i],
  660. ap_probe_req_rx, wpa_s);
  661. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  662. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  663. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  664. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  665. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  666. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  667. #ifdef CONFIG_P2P
  668. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  669. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  670. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  671. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  672. ssid);
  673. #endif /* CONFIG_P2P */
  674. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  675. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  676. #ifdef CONFIG_TESTING_OPTIONS
  677. hapd_iface->bss[i]->ext_eapol_frame_io =
  678. wpa_s->ext_eapol_frame_io;
  679. #endif /* CONFIG_TESTING_OPTIONS */
  680. }
  681. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  682. hapd_iface->bss[0]->driver = wpa_s->driver;
  683. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  684. wpa_s->current_ssid = ssid;
  685. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  686. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  687. wpa_s->assoc_freq = ssid->frequency;
  688. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  689. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  690. wpa_supplicant_ap_deinit(wpa_s);
  691. return -1;
  692. }
  693. return 0;
  694. }
  695. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  696. {
  697. #ifdef CONFIG_WPS
  698. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  699. #endif /* CONFIG_WPS */
  700. if (wpa_s->ap_iface == NULL)
  701. return;
  702. wpa_s->current_ssid = NULL;
  703. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  704. wpa_s->assoc_freq = 0;
  705. wpas_p2p_ap_deinit(wpa_s);
  706. wpa_s->ap_iface->driver_ap_teardown =
  707. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  708. hostapd_interface_deinit(wpa_s->ap_iface);
  709. hostapd_interface_free(wpa_s->ap_iface);
  710. wpa_s->ap_iface = NULL;
  711. wpa_drv_deinit_ap(wpa_s);
  712. wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR
  713. " reason=%d locally_generated=1",
  714. MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING);
  715. }
  716. void ap_tx_status(void *ctx, const u8 *addr,
  717. const u8 *buf, size_t len, int ack)
  718. {
  719. #ifdef NEED_AP_MLME
  720. struct wpa_supplicant *wpa_s = ctx;
  721. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  722. #endif /* NEED_AP_MLME */
  723. }
  724. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  725. const u8 *data, size_t len, int ack)
  726. {
  727. #ifdef NEED_AP_MLME
  728. struct wpa_supplicant *wpa_s = ctx;
  729. if (!wpa_s->ap_iface)
  730. return;
  731. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  732. #endif /* NEED_AP_MLME */
  733. }
  734. void ap_client_poll_ok(void *ctx, const u8 *addr)
  735. {
  736. #ifdef NEED_AP_MLME
  737. struct wpa_supplicant *wpa_s = ctx;
  738. if (wpa_s->ap_iface)
  739. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  740. #endif /* NEED_AP_MLME */
  741. }
  742. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  743. {
  744. #ifdef NEED_AP_MLME
  745. struct wpa_supplicant *wpa_s = ctx;
  746. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  747. #endif /* NEED_AP_MLME */
  748. }
  749. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  750. {
  751. #ifdef NEED_AP_MLME
  752. struct wpa_supplicant *wpa_s = ctx;
  753. struct hostapd_frame_info fi;
  754. os_memset(&fi, 0, sizeof(fi));
  755. fi.datarate = rx_mgmt->datarate;
  756. fi.ssi_signal = rx_mgmt->ssi_signal;
  757. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  758. rx_mgmt->frame_len, &fi);
  759. #endif /* NEED_AP_MLME */
  760. }
  761. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  762. {
  763. #ifdef NEED_AP_MLME
  764. struct wpa_supplicant *wpa_s = ctx;
  765. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  766. #endif /* NEED_AP_MLME */
  767. }
  768. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  769. const u8 *src_addr, const u8 *buf, size_t len)
  770. {
  771. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  772. }
  773. #ifdef CONFIG_WPS
  774. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  775. const u8 *p2p_dev_addr)
  776. {
  777. if (!wpa_s->ap_iface)
  778. return -1;
  779. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  780. p2p_dev_addr);
  781. }
  782. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  783. {
  784. struct wps_registrar *reg;
  785. int reg_sel = 0, wps_sta = 0;
  786. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  787. return -1;
  788. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  789. reg_sel = wps_registrar_wps_cancel(reg);
  790. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  791. ap_sta_wps_cancel, NULL);
  792. if (!reg_sel && !wps_sta) {
  793. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  794. "time");
  795. return -1;
  796. }
  797. /*
  798. * There are 2 cases to return wps cancel as success:
  799. * 1. When wps cancel was initiated but no connection has been
  800. * established with client yet.
  801. * 2. Client is in the middle of exchanging WPS messages.
  802. */
  803. return 0;
  804. }
  805. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  806. const char *pin, char *buf, size_t buflen,
  807. int timeout)
  808. {
  809. int ret, ret_len = 0;
  810. if (!wpa_s->ap_iface)
  811. return -1;
  812. if (pin == NULL) {
  813. unsigned int rpin;
  814. if (wps_generate_pin(&rpin) < 0)
  815. return -1;
  816. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  817. if (os_snprintf_error(buflen, ret_len))
  818. return -1;
  819. pin = buf;
  820. } else if (buf) {
  821. ret_len = os_snprintf(buf, buflen, "%s", pin);
  822. if (os_snprintf_error(buflen, ret_len))
  823. return -1;
  824. }
  825. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  826. timeout);
  827. if (ret)
  828. return -1;
  829. return ret_len;
  830. }
  831. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  832. {
  833. struct wpa_supplicant *wpa_s = eloop_data;
  834. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  835. wpas_wps_ap_pin_disable(wpa_s);
  836. }
  837. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  838. {
  839. struct hostapd_data *hapd;
  840. if (wpa_s->ap_iface == NULL)
  841. return;
  842. hapd = wpa_s->ap_iface->bss[0];
  843. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  844. hapd->ap_pin_failures = 0;
  845. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  846. if (timeout > 0)
  847. eloop_register_timeout(timeout, 0,
  848. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  849. }
  850. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  851. {
  852. struct hostapd_data *hapd;
  853. if (wpa_s->ap_iface == NULL)
  854. return;
  855. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  856. hapd = wpa_s->ap_iface->bss[0];
  857. os_free(hapd->conf->ap_pin);
  858. hapd->conf->ap_pin = NULL;
  859. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  860. }
  861. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  862. {
  863. struct hostapd_data *hapd;
  864. unsigned int pin;
  865. char pin_txt[9];
  866. if (wpa_s->ap_iface == NULL)
  867. return NULL;
  868. hapd = wpa_s->ap_iface->bss[0];
  869. if (wps_generate_pin(&pin) < 0)
  870. return NULL;
  871. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  872. os_free(hapd->conf->ap_pin);
  873. hapd->conf->ap_pin = os_strdup(pin_txt);
  874. if (hapd->conf->ap_pin == NULL)
  875. return NULL;
  876. wpas_wps_ap_pin_enable(wpa_s, timeout);
  877. return hapd->conf->ap_pin;
  878. }
  879. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  880. {
  881. struct hostapd_data *hapd;
  882. if (wpa_s->ap_iface == NULL)
  883. return NULL;
  884. hapd = wpa_s->ap_iface->bss[0];
  885. return hapd->conf->ap_pin;
  886. }
  887. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  888. int timeout)
  889. {
  890. struct hostapd_data *hapd;
  891. char pin_txt[9];
  892. int ret;
  893. if (wpa_s->ap_iface == NULL)
  894. return -1;
  895. hapd = wpa_s->ap_iface->bss[0];
  896. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  897. if (os_snprintf_error(sizeof(pin_txt), ret))
  898. return -1;
  899. os_free(hapd->conf->ap_pin);
  900. hapd->conf->ap_pin = os_strdup(pin_txt);
  901. if (hapd->conf->ap_pin == NULL)
  902. return -1;
  903. wpas_wps_ap_pin_enable(wpa_s, timeout);
  904. return 0;
  905. }
  906. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  907. {
  908. struct hostapd_data *hapd;
  909. if (wpa_s->ap_iface == NULL)
  910. return;
  911. hapd = wpa_s->ap_iface->bss[0];
  912. /*
  913. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  914. * PIN if this happens multiple times to slow down brute force attacks.
  915. */
  916. hapd->ap_pin_failures++;
  917. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  918. hapd->ap_pin_failures);
  919. if (hapd->ap_pin_failures < 3)
  920. return;
  921. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  922. hapd->ap_pin_failures = 0;
  923. os_free(hapd->conf->ap_pin);
  924. hapd->conf->ap_pin = NULL;
  925. }
  926. #ifdef CONFIG_WPS_NFC
  927. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  928. int ndef)
  929. {
  930. struct hostapd_data *hapd;
  931. if (wpa_s->ap_iface == NULL)
  932. return NULL;
  933. hapd = wpa_s->ap_iface->bss[0];
  934. return hostapd_wps_nfc_config_token(hapd, ndef);
  935. }
  936. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  937. int ndef)
  938. {
  939. struct hostapd_data *hapd;
  940. if (wpa_s->ap_iface == NULL)
  941. return NULL;
  942. hapd = wpa_s->ap_iface->bss[0];
  943. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  944. }
  945. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  946. const struct wpabuf *req,
  947. const struct wpabuf *sel)
  948. {
  949. struct hostapd_data *hapd;
  950. if (wpa_s->ap_iface == NULL)
  951. return -1;
  952. hapd = wpa_s->ap_iface->bss[0];
  953. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  954. }
  955. #endif /* CONFIG_WPS_NFC */
  956. #endif /* CONFIG_WPS */
  957. #ifdef CONFIG_CTRL_IFACE
  958. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  959. char *buf, size_t buflen)
  960. {
  961. struct hostapd_data *hapd;
  962. if (wpa_s->ap_iface)
  963. hapd = wpa_s->ap_iface->bss[0];
  964. else if (wpa_s->ifmsh)
  965. hapd = wpa_s->ifmsh->bss[0];
  966. else
  967. return -1;
  968. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  969. }
  970. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  971. char *buf, size_t buflen)
  972. {
  973. struct hostapd_data *hapd;
  974. if (wpa_s->ap_iface)
  975. hapd = wpa_s->ap_iface->bss[0];
  976. else if (wpa_s->ifmsh)
  977. hapd = wpa_s->ifmsh->bss[0];
  978. else
  979. return -1;
  980. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  981. }
  982. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  983. char *buf, size_t buflen)
  984. {
  985. struct hostapd_data *hapd;
  986. if (wpa_s->ap_iface)
  987. hapd = wpa_s->ap_iface->bss[0];
  988. else if (wpa_s->ifmsh)
  989. hapd = wpa_s->ifmsh->bss[0];
  990. else
  991. return -1;
  992. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  993. }
  994. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  995. const char *txtaddr)
  996. {
  997. if (wpa_s->ap_iface == NULL)
  998. return -1;
  999. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  1000. txtaddr);
  1001. }
  1002. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  1003. const char *txtaddr)
  1004. {
  1005. if (wpa_s->ap_iface == NULL)
  1006. return -1;
  1007. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  1008. txtaddr);
  1009. }
  1010. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  1011. size_t buflen, int verbose)
  1012. {
  1013. char *pos = buf, *end = buf + buflen;
  1014. int ret;
  1015. struct hostapd_bss_config *conf;
  1016. if (wpa_s->ap_iface == NULL)
  1017. return -1;
  1018. conf = wpa_s->ap_iface->bss[0]->conf;
  1019. if (conf->wpa == 0)
  1020. return 0;
  1021. ret = os_snprintf(pos, end - pos,
  1022. "pairwise_cipher=%s\n"
  1023. "group_cipher=%s\n"
  1024. "key_mgmt=%s\n",
  1025. wpa_cipher_txt(conf->rsn_pairwise),
  1026. wpa_cipher_txt(conf->wpa_group),
  1027. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  1028. conf->wpa));
  1029. if (os_snprintf_error(end - pos, ret))
  1030. return pos - buf;
  1031. pos += ret;
  1032. return pos - buf;
  1033. }
  1034. #endif /* CONFIG_CTRL_IFACE */
  1035. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  1036. {
  1037. struct hostapd_iface *iface = wpa_s->ap_iface;
  1038. struct wpa_ssid *ssid = wpa_s->current_ssid;
  1039. struct hostapd_data *hapd;
  1040. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  1041. ssid->mode == WPAS_MODE_INFRA ||
  1042. ssid->mode == WPAS_MODE_IBSS)
  1043. return -1;
  1044. #ifdef CONFIG_P2P
  1045. if (ssid->mode == WPAS_MODE_P2P_GO)
  1046. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  1047. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  1048. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  1049. P2P_GROUP_FORMATION;
  1050. #endif /* CONFIG_P2P */
  1051. hapd = iface->bss[0];
  1052. if (hapd->drv_priv == NULL)
  1053. return -1;
  1054. ieee802_11_set_beacons(iface);
  1055. hostapd_set_ap_wps_ie(hapd);
  1056. return 0;
  1057. }
  1058. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  1059. struct csa_settings *settings)
  1060. {
  1061. #ifdef NEED_AP_MLME
  1062. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1063. return -1;
  1064. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  1065. #else /* NEED_AP_MLME */
  1066. return -1;
  1067. #endif /* NEED_AP_MLME */
  1068. }
  1069. #ifdef CONFIG_CTRL_IFACE
  1070. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  1071. {
  1072. struct csa_settings settings;
  1073. int ret = hostapd_parse_csa_settings(pos, &settings);
  1074. if (ret)
  1075. return ret;
  1076. return ap_switch_channel(wpa_s, &settings);
  1077. }
  1078. #endif /* CONFIG_CTRL_IFACE */
  1079. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  1080. int offset, int width, int cf1, int cf2)
  1081. {
  1082. if (!wpa_s->ap_iface)
  1083. return;
  1084. wpa_s->assoc_freq = freq;
  1085. if (wpa_s->current_ssid)
  1086. wpa_s->current_ssid->frequency = freq;
  1087. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht,
  1088. offset, width, cf1, cf2);
  1089. }
  1090. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  1091. const u8 *addr)
  1092. {
  1093. struct hostapd_data *hapd;
  1094. struct hostapd_bss_config *conf;
  1095. if (!wpa_s->ap_iface)
  1096. return -1;
  1097. if (addr)
  1098. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  1099. MAC2STR(addr));
  1100. else
  1101. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  1102. hapd = wpa_s->ap_iface->bss[0];
  1103. conf = hapd->conf;
  1104. os_free(conf->accept_mac);
  1105. conf->accept_mac = NULL;
  1106. conf->num_accept_mac = 0;
  1107. os_free(conf->deny_mac);
  1108. conf->deny_mac = NULL;
  1109. conf->num_deny_mac = 0;
  1110. if (addr == NULL) {
  1111. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  1112. return 0;
  1113. }
  1114. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  1115. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  1116. if (conf->accept_mac == NULL)
  1117. return -1;
  1118. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  1119. conf->num_accept_mac = 1;
  1120. return 0;
  1121. }
  1122. #ifdef CONFIG_WPS_NFC
  1123. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  1124. const struct wpabuf *pw, const u8 *pubkey_hash)
  1125. {
  1126. struct hostapd_data *hapd;
  1127. struct wps_context *wps;
  1128. if (!wpa_s->ap_iface)
  1129. return -1;
  1130. hapd = wpa_s->ap_iface->bss[0];
  1131. wps = hapd->wps;
  1132. if (wpa_s->p2pdev->conf->wps_nfc_dh_pubkey == NULL ||
  1133. wpa_s->p2pdev->conf->wps_nfc_dh_privkey == NULL) {
  1134. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1135. return -1;
  1136. }
  1137. dh5_free(wps->dh_ctx);
  1138. wpabuf_free(wps->dh_pubkey);
  1139. wpabuf_free(wps->dh_privkey);
  1140. wps->dh_privkey = wpabuf_dup(
  1141. wpa_s->p2pdev->conf->wps_nfc_dh_privkey);
  1142. wps->dh_pubkey = wpabuf_dup(
  1143. wpa_s->p2pdev->conf->wps_nfc_dh_pubkey);
  1144. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1145. wps->dh_ctx = NULL;
  1146. wpabuf_free(wps->dh_pubkey);
  1147. wps->dh_pubkey = NULL;
  1148. wpabuf_free(wps->dh_privkey);
  1149. wps->dh_privkey = NULL;
  1150. return -1;
  1151. }
  1152. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1153. if (wps->dh_ctx == NULL)
  1154. return -1;
  1155. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1156. pw_id,
  1157. pw ? wpabuf_head(pw) : NULL,
  1158. pw ? wpabuf_len(pw) : 0, 1);
  1159. }
  1160. #endif /* CONFIG_WPS_NFC */
  1161. #ifdef CONFIG_CTRL_IFACE
  1162. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1163. {
  1164. struct hostapd_data *hapd;
  1165. if (!wpa_s->ap_iface)
  1166. return -1;
  1167. hapd = wpa_s->ap_iface->bss[0];
  1168. return hostapd_ctrl_iface_stop_ap(hapd);
  1169. }
  1170. int wpas_ap_pmksa_cache_list(struct wpa_supplicant *wpa_s, char *buf,
  1171. size_t len)
  1172. {
  1173. size_t reply_len = 0, i;
  1174. char ap_delimiter[] = "---- AP ----\n";
  1175. char mesh_delimiter[] = "---- mesh ----\n";
  1176. size_t dlen;
  1177. if (wpa_s->ap_iface) {
  1178. dlen = os_strlen(ap_delimiter);
  1179. if (dlen > len - reply_len)
  1180. return reply_len;
  1181. os_memcpy(&buf[reply_len], ap_delimiter, dlen);
  1182. reply_len += dlen;
  1183. for (i = 0; i < wpa_s->ap_iface->num_bss; i++) {
  1184. reply_len += hostapd_ctrl_iface_pmksa_list(
  1185. wpa_s->ap_iface->bss[i],
  1186. &buf[reply_len], len - reply_len);
  1187. }
  1188. }
  1189. if (wpa_s->ifmsh) {
  1190. dlen = os_strlen(mesh_delimiter);
  1191. if (dlen > len - reply_len)
  1192. return reply_len;
  1193. os_memcpy(&buf[reply_len], mesh_delimiter, dlen);
  1194. reply_len += dlen;
  1195. reply_len += hostapd_ctrl_iface_pmksa_list(
  1196. wpa_s->ifmsh->bss[0], &buf[reply_len],
  1197. len - reply_len);
  1198. }
  1199. return reply_len;
  1200. }
  1201. void wpas_ap_pmksa_cache_flush(struct wpa_supplicant *wpa_s)
  1202. {
  1203. size_t i;
  1204. if (wpa_s->ap_iface) {
  1205. for (i = 0; i < wpa_s->ap_iface->num_bss; i++)
  1206. hostapd_ctrl_iface_pmksa_flush(wpa_s->ap_iface->bss[i]);
  1207. }
  1208. if (wpa_s->ifmsh)
  1209. hostapd_ctrl_iface_pmksa_flush(wpa_s->ifmsh->bss[0]);
  1210. }
  1211. #ifdef CONFIG_PMKSA_CACHE_EXTERNAL
  1212. #ifdef CONFIG_MESH
  1213. int wpas_ap_pmksa_cache_list_mesh(struct wpa_supplicant *wpa_s, const u8 *addr,
  1214. char *buf, size_t len)
  1215. {
  1216. return hostapd_ctrl_iface_pmksa_list_mesh(wpa_s->ifmsh->bss[0], addr,
  1217. &buf[0], len);
  1218. }
  1219. int wpas_ap_pmksa_cache_add_external(struct wpa_supplicant *wpa_s, char *cmd)
  1220. {
  1221. struct external_pmksa_cache *entry;
  1222. void *pmksa_cache;
  1223. pmksa_cache = hostapd_ctrl_iface_pmksa_create_entry(wpa_s->own_addr,
  1224. cmd);
  1225. if (!pmksa_cache)
  1226. return -1;
  1227. entry = os_zalloc(sizeof(struct external_pmksa_cache));
  1228. if (!entry)
  1229. return -1;
  1230. entry->pmksa_cache = pmksa_cache;
  1231. dl_list_add(&wpa_s->mesh_external_pmksa_cache, &entry->list);
  1232. return 0;
  1233. }
  1234. #endif /* CONFIG_MESH */
  1235. #endif /* CONFIG_PMKSA_CACHE_EXTERNAL */
  1236. #endif /* CONFIG_CTRL_IFACE */
  1237. #ifdef NEED_AP_MLME
  1238. void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s,
  1239. struct dfs_event *radar)
  1240. {
  1241. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1242. return;
  1243. wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq);
  1244. hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq,
  1245. radar->ht_enabled, radar->chan_offset,
  1246. radar->chan_width,
  1247. radar->cf1, radar->cf2);
  1248. }
  1249. void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s,
  1250. struct dfs_event *radar)
  1251. {
  1252. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1253. return;
  1254. wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq);
  1255. hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq,
  1256. radar->ht_enabled, radar->chan_offset,
  1257. radar->chan_width, radar->cf1, radar->cf2);
  1258. }
  1259. void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s,
  1260. struct dfs_event *radar)
  1261. {
  1262. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1263. return;
  1264. wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq);
  1265. hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq,
  1266. radar->ht_enabled, radar->chan_offset,
  1267. radar->chan_width, radar->cf1, radar->cf2);
  1268. }
  1269. void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s,
  1270. struct dfs_event *radar)
  1271. {
  1272. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1273. return;
  1274. wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq);
  1275. hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq,
  1276. radar->ht_enabled, radar->chan_offset,
  1277. radar->chan_width, radar->cf1, radar->cf2);
  1278. }
  1279. void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s,
  1280. struct dfs_event *radar)
  1281. {
  1282. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1283. return;
  1284. wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq);
  1285. hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq,
  1286. radar->ht_enabled, radar->chan_offset,
  1287. radar->chan_width, radar->cf1, radar->cf2);
  1288. }
  1289. #endif /* NEED_AP_MLME */
  1290. void ap_periodic(struct wpa_supplicant *wpa_s)
  1291. {
  1292. if (wpa_s->ap_iface)
  1293. hostapd_periodic_iface(wpa_s->ap_iface);
  1294. }