ap.c 39 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "ap/dfs.h"
  28. #include "wps/wps.h"
  29. #include "common/ieee802_11_defs.h"
  30. #include "config_ssid.h"
  31. #include "config.h"
  32. #include "wpa_supplicant_i.h"
  33. #include "driver_i.h"
  34. #include "p2p_supplicant.h"
  35. #include "ap.h"
  36. #include "ap/sta_info.h"
  37. #include "notify.h"
  38. #ifdef CONFIG_WPS
  39. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  40. #endif /* CONFIG_WPS */
  41. #ifdef CONFIG_IEEE80211N
  42. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  43. struct hostapd_config *conf,
  44. struct hostapd_hw_modes *mode)
  45. {
  46. #ifdef CONFIG_P2P
  47. u8 center_chan = 0;
  48. u8 channel = conf->channel;
  49. if (!conf->secondary_channel)
  50. goto no_vht;
  51. switch (conf->vht_oper_chwidth) {
  52. case VHT_CHANWIDTH_80MHZ:
  53. case VHT_CHANWIDTH_80P80MHZ:
  54. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  55. break;
  56. case VHT_CHANWIDTH_160MHZ:
  57. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  58. break;
  59. default:
  60. /*
  61. * conf->vht_oper_chwidth might not be set for non-P2P GO cases,
  62. * try oper_cwidth 160 MHz first then VHT 80 MHz, if 160 MHz is
  63. * not supported.
  64. */
  65. conf->vht_oper_chwidth = VHT_CHANWIDTH_160MHZ;
  66. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  67. if (!center_chan) {
  68. conf->vht_oper_chwidth = VHT_CHANWIDTH_80MHZ;
  69. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode,
  70. channel);
  71. }
  72. break;
  73. }
  74. if (!center_chan)
  75. goto no_vht;
  76. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  77. return;
  78. no_vht:
  79. conf->vht_oper_centr_freq_seg0_idx =
  80. channel + conf->secondary_channel * 2;
  81. #else /* CONFIG_P2P */
  82. conf->vht_oper_centr_freq_seg0_idx =
  83. conf->channel + conf->secondary_channel * 2;
  84. #endif /* CONFIG_P2P */
  85. conf->vht_oper_chwidth = VHT_CHANWIDTH_USE_HT;
  86. }
  87. #endif /* CONFIG_IEEE80211N */
  88. int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  89. struct wpa_ssid *ssid,
  90. struct hostapd_config *conf)
  91. {
  92. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  93. &conf->channel);
  94. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  95. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  96. ssid->frequency);
  97. return -1;
  98. }
  99. /* TODO: enable HT40 if driver supports it;
  100. * drop to 11b if driver does not support 11g */
  101. #ifdef CONFIG_IEEE80211N
  102. /*
  103. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  104. * and a mask of allowed capabilities within conf->ht_capab.
  105. * Using default config settings for: conf->ht_op_mode_fixed,
  106. * conf->secondary_channel, conf->require_ht
  107. */
  108. if (wpa_s->hw.modes) {
  109. struct hostapd_hw_modes *mode = NULL;
  110. int i, no_ht = 0;
  111. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  112. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  113. mode = &wpa_s->hw.modes[i];
  114. break;
  115. }
  116. }
  117. #ifdef CONFIG_HT_OVERRIDES
  118. if (ssid->disable_ht) {
  119. conf->ieee80211n = 0;
  120. conf->ht_capab = 0;
  121. no_ht = 1;
  122. }
  123. #endif /* CONFIG_HT_OVERRIDES */
  124. if (!no_ht && mode && mode->ht_capab) {
  125. conf->ieee80211n = 1;
  126. #ifdef CONFIG_P2P
  127. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  128. (mode->ht_capab &
  129. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  130. ssid->ht40)
  131. conf->secondary_channel =
  132. wpas_p2p_get_ht40_mode(wpa_s, mode,
  133. conf->channel);
  134. if (conf->secondary_channel)
  135. conf->ht_capab |=
  136. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  137. #endif /* CONFIG_P2P */
  138. /*
  139. * white-list capabilities that won't cause issues
  140. * to connecting stations, while leaving the current
  141. * capabilities intact (currently disabled SMPS).
  142. */
  143. conf->ht_capab |= mode->ht_capab &
  144. (HT_CAP_INFO_GREEN_FIELD |
  145. HT_CAP_INFO_SHORT_GI20MHZ |
  146. HT_CAP_INFO_SHORT_GI40MHZ |
  147. HT_CAP_INFO_RX_STBC_MASK |
  148. HT_CAP_INFO_TX_STBC |
  149. HT_CAP_INFO_MAX_AMSDU_SIZE);
  150. if (mode->vht_capab && ssid->vht) {
  151. conf->ieee80211ac = 1;
  152. wpas_conf_ap_vht(wpa_s, conf, mode);
  153. }
  154. }
  155. }
  156. if (conf->secondary_channel) {
  157. struct wpa_supplicant *iface;
  158. for (iface = wpa_s->global->ifaces; iface; iface = iface->next)
  159. {
  160. if (iface == wpa_s ||
  161. iface->wpa_state < WPA_AUTHENTICATING ||
  162. (int) iface->assoc_freq != ssid->frequency)
  163. continue;
  164. /*
  165. * Do not allow 40 MHz co-ex PRI/SEC switch to force us
  166. * to change our PRI channel since we have an existing,
  167. * concurrent connection on that channel and doing
  168. * multi-channel concurrency is likely to cause more
  169. * harm than using different PRI/SEC selection in
  170. * environment with multiple BSSes on these two channels
  171. * with mixed 20 MHz or PRI channel selection.
  172. */
  173. conf->no_pri_sec_switch = 1;
  174. }
  175. }
  176. #endif /* CONFIG_IEEE80211N */
  177. return 0;
  178. }
  179. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  180. struct wpa_ssid *ssid,
  181. struct hostapd_config *conf)
  182. {
  183. struct hostapd_bss_config *bss = conf->bss[0];
  184. conf->driver = wpa_s->driver;
  185. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  186. if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf))
  187. return -1;
  188. if (ssid->pbss > 1) {
  189. wpa_printf(MSG_ERROR, "Invalid pbss value(%d) for AP mode",
  190. ssid->pbss);
  191. return -1;
  192. }
  193. bss->pbss = ssid->pbss;
  194. #ifdef CONFIG_ACS
  195. if (ssid->acs) {
  196. /* Setting channel to 0 in order to enable ACS */
  197. conf->channel = 0;
  198. wpa_printf(MSG_DEBUG, "Use automatic channel selection");
  199. }
  200. #endif /* CONFIG_ACS */
  201. if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) {
  202. conf->ieee80211h = 1;
  203. conf->ieee80211d = 1;
  204. conf->country[0] = wpa_s->conf->country[0];
  205. conf->country[1] = wpa_s->conf->country[1];
  206. }
  207. #ifdef CONFIG_P2P
  208. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  209. (ssid->mode == WPAS_MODE_P2P_GO ||
  210. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  211. /* Remove 802.11b rates from supported and basic rate sets */
  212. int *list = os_malloc(4 * sizeof(int));
  213. if (list) {
  214. list[0] = 60;
  215. list[1] = 120;
  216. list[2] = 240;
  217. list[3] = -1;
  218. }
  219. conf->basic_rates = list;
  220. list = os_malloc(9 * sizeof(int));
  221. if (list) {
  222. list[0] = 60;
  223. list[1] = 90;
  224. list[2] = 120;
  225. list[3] = 180;
  226. list[4] = 240;
  227. list[5] = 360;
  228. list[6] = 480;
  229. list[7] = 540;
  230. list[8] = -1;
  231. }
  232. conf->supported_rates = list;
  233. }
  234. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  235. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  236. if (ssid->p2p_group) {
  237. os_memcpy(bss->ip_addr_go, wpa_s->p2pdev->conf->ip_addr_go, 4);
  238. os_memcpy(bss->ip_addr_mask, wpa_s->p2pdev->conf->ip_addr_mask,
  239. 4);
  240. os_memcpy(bss->ip_addr_start,
  241. wpa_s->p2pdev->conf->ip_addr_start, 4);
  242. os_memcpy(bss->ip_addr_end, wpa_s->p2pdev->conf->ip_addr_end,
  243. 4);
  244. }
  245. #endif /* CONFIG_P2P */
  246. if (ssid->ssid_len == 0) {
  247. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  248. return -1;
  249. }
  250. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  251. bss->ssid.ssid_len = ssid->ssid_len;
  252. bss->ssid.ssid_set = 1;
  253. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  254. if (ssid->auth_alg)
  255. bss->auth_algs = ssid->auth_alg;
  256. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  257. bss->wpa = ssid->proto;
  258. if (ssid->key_mgmt == DEFAULT_KEY_MGMT)
  259. bss->wpa_key_mgmt = WPA_KEY_MGMT_PSK;
  260. else
  261. bss->wpa_key_mgmt = ssid->key_mgmt;
  262. bss->wpa_pairwise = ssid->pairwise_cipher;
  263. if (ssid->psk_set) {
  264. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  265. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  266. if (bss->ssid.wpa_psk == NULL)
  267. return -1;
  268. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  269. bss->ssid.wpa_psk->group = 1;
  270. bss->ssid.wpa_psk_set = 1;
  271. } else if (ssid->passphrase) {
  272. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  273. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  274. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  275. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  276. int i;
  277. for (i = 0; i < NUM_WEP_KEYS; i++) {
  278. if (ssid->wep_key_len[i] == 0)
  279. continue;
  280. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  281. if (wep->key[i] == NULL)
  282. return -1;
  283. os_memcpy(wep->key[i], ssid->wep_key[i],
  284. ssid->wep_key_len[i]);
  285. wep->len[i] = ssid->wep_key_len[i];
  286. }
  287. wep->idx = ssid->wep_tx_keyidx;
  288. wep->keys_set = 1;
  289. }
  290. if (ssid->ap_max_inactivity)
  291. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  292. if (ssid->dtim_period)
  293. bss->dtim_period = ssid->dtim_period;
  294. else if (wpa_s->conf->dtim_period)
  295. bss->dtim_period = wpa_s->conf->dtim_period;
  296. if (ssid->beacon_int)
  297. conf->beacon_int = ssid->beacon_int;
  298. else if (wpa_s->conf->beacon_int)
  299. conf->beacon_int = wpa_s->conf->beacon_int;
  300. #ifdef CONFIG_P2P
  301. if (ssid->mode == WPAS_MODE_P2P_GO ||
  302. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) {
  303. if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) {
  304. wpa_printf(MSG_INFO,
  305. "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it",
  306. wpa_s->conf->p2p_go_ctwindow,
  307. conf->beacon_int);
  308. conf->p2p_go_ctwindow = 0;
  309. } else {
  310. conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow;
  311. }
  312. }
  313. #endif /* CONFIG_P2P */
  314. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  315. bss->rsn_pairwise = bss->wpa_pairwise;
  316. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  317. bss->rsn_pairwise);
  318. if (bss->wpa && bss->ieee802_1x)
  319. bss->ssid.security_policy = SECURITY_WPA;
  320. else if (bss->wpa)
  321. bss->ssid.security_policy = SECURITY_WPA_PSK;
  322. else if (bss->ieee802_1x) {
  323. int cipher = WPA_CIPHER_NONE;
  324. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  325. bss->ssid.wep.default_len = bss->default_wep_key_len;
  326. if (bss->default_wep_key_len)
  327. cipher = bss->default_wep_key_len >= 13 ?
  328. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  329. bss->wpa_group = cipher;
  330. bss->wpa_pairwise = cipher;
  331. bss->rsn_pairwise = cipher;
  332. } else if (bss->ssid.wep.keys_set) {
  333. int cipher = WPA_CIPHER_WEP40;
  334. if (bss->ssid.wep.len[0] >= 13)
  335. cipher = WPA_CIPHER_WEP104;
  336. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  337. bss->wpa_group = cipher;
  338. bss->wpa_pairwise = cipher;
  339. bss->rsn_pairwise = cipher;
  340. } else {
  341. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  342. bss->wpa_group = WPA_CIPHER_NONE;
  343. bss->wpa_pairwise = WPA_CIPHER_NONE;
  344. bss->rsn_pairwise = WPA_CIPHER_NONE;
  345. }
  346. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  347. (bss->wpa_group == WPA_CIPHER_CCMP ||
  348. bss->wpa_group == WPA_CIPHER_GCMP ||
  349. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  350. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  351. /*
  352. * Strong ciphers do not need frequent rekeying, so increase
  353. * the default GTK rekeying period to 24 hours.
  354. */
  355. bss->wpa_group_rekey = 86400;
  356. }
  357. #ifdef CONFIG_IEEE80211W
  358. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  359. bss->ieee80211w = ssid->ieee80211w;
  360. #endif /* CONFIG_IEEE80211W */
  361. #ifdef CONFIG_WPS
  362. /*
  363. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  364. * require user interaction to actually use it. Only the internal
  365. * Registrar is supported.
  366. */
  367. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  368. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  369. goto no_wps;
  370. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  371. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  372. !(bss->wpa & 2)))
  373. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  374. * configuration */
  375. bss->eap_server = 1;
  376. if (!ssid->ignore_broadcast_ssid)
  377. bss->wps_state = 2;
  378. bss->ap_setup_locked = 2;
  379. if (wpa_s->conf->config_methods)
  380. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  381. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  382. WPS_DEV_TYPE_LEN);
  383. if (wpa_s->conf->device_name) {
  384. bss->device_name = os_strdup(wpa_s->conf->device_name);
  385. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  386. }
  387. if (wpa_s->conf->manufacturer)
  388. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  389. if (wpa_s->conf->model_name)
  390. bss->model_name = os_strdup(wpa_s->conf->model_name);
  391. if (wpa_s->conf->model_number)
  392. bss->model_number = os_strdup(wpa_s->conf->model_number);
  393. if (wpa_s->conf->serial_number)
  394. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  395. if (is_nil_uuid(wpa_s->conf->uuid))
  396. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  397. else
  398. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  399. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  400. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  401. no_wps:
  402. #endif /* CONFIG_WPS */
  403. if (wpa_s->max_stations &&
  404. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  405. bss->max_num_sta = wpa_s->max_stations;
  406. else
  407. bss->max_num_sta = wpa_s->conf->max_num_sta;
  408. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  409. if (wpa_s->conf->ap_vendor_elements) {
  410. bss->vendor_elements =
  411. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  412. }
  413. return 0;
  414. }
  415. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  416. {
  417. #ifdef CONFIG_P2P
  418. struct wpa_supplicant *wpa_s = ctx;
  419. const struct ieee80211_mgmt *mgmt;
  420. mgmt = (const struct ieee80211_mgmt *) buf;
  421. if (len < IEEE80211_HDRLEN + 1)
  422. return;
  423. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  424. return;
  425. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  426. mgmt->u.action.category,
  427. buf + IEEE80211_HDRLEN + 1,
  428. len - IEEE80211_HDRLEN - 1, freq);
  429. #endif /* CONFIG_P2P */
  430. }
  431. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  432. union wps_event_data *data)
  433. {
  434. #ifdef CONFIG_P2P
  435. struct wpa_supplicant *wpa_s = ctx;
  436. if (event == WPS_EV_FAIL) {
  437. struct wps_event_fail *fail = &data->fail;
  438. if (wpa_s->p2pdev && wpa_s->p2pdev != wpa_s &&
  439. wpa_s == wpa_s->global->p2p_group_formation) {
  440. /*
  441. * src/ap/wps_hostapd.c has already sent this on the
  442. * main interface, so only send on the parent interface
  443. * here if needed.
  444. */
  445. wpa_msg(wpa_s->p2pdev, MSG_INFO, WPS_EVENT_FAIL
  446. "msg=%d config_error=%d",
  447. fail->msg, fail->config_error);
  448. }
  449. wpas_p2p_wps_failed(wpa_s, fail);
  450. }
  451. #endif /* CONFIG_P2P */
  452. }
  453. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  454. int authorized, const u8 *p2p_dev_addr)
  455. {
  456. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  457. }
  458. #ifdef CONFIG_P2P
  459. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  460. const u8 *psk, size_t psk_len)
  461. {
  462. struct wpa_supplicant *wpa_s = ctx;
  463. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  464. return;
  465. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  466. }
  467. #endif /* CONFIG_P2P */
  468. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  469. {
  470. #ifdef CONFIG_P2P
  471. struct wpa_supplicant *wpa_s = ctx;
  472. const struct ieee80211_mgmt *mgmt;
  473. mgmt = (const struct ieee80211_mgmt *) buf;
  474. if (len < IEEE80211_HDRLEN + 1)
  475. return -1;
  476. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  477. mgmt->u.action.category,
  478. buf + IEEE80211_HDRLEN + 1,
  479. len - IEEE80211_HDRLEN - 1, freq);
  480. #endif /* CONFIG_P2P */
  481. return 0;
  482. }
  483. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  484. const u8 *bssid, const u8 *ie, size_t ie_len,
  485. int ssi_signal)
  486. {
  487. struct wpa_supplicant *wpa_s = ctx;
  488. unsigned int freq = 0;
  489. if (wpa_s->ap_iface)
  490. freq = wpa_s->ap_iface->freq;
  491. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  492. freq, ssi_signal);
  493. }
  494. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  495. const u8 *uuid_e)
  496. {
  497. struct wpa_supplicant *wpa_s = ctx;
  498. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  499. }
  500. static void wpas_ap_configured_cb(void *ctx)
  501. {
  502. struct wpa_supplicant *wpa_s = ctx;
  503. #ifdef CONFIG_ACS
  504. if (wpa_s->current_ssid && wpa_s->current_ssid->acs)
  505. wpa_s->assoc_freq = wpa_s->ap_iface->freq;
  506. #endif /* CONFIG_ACS */
  507. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  508. if (wpa_s->ap_configured_cb)
  509. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  510. wpa_s->ap_configured_cb_data);
  511. }
  512. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  513. struct wpa_ssid *ssid)
  514. {
  515. struct wpa_driver_associate_params params;
  516. struct hostapd_iface *hapd_iface;
  517. struct hostapd_config *conf;
  518. size_t i;
  519. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  520. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  521. return -1;
  522. }
  523. wpa_supplicant_ap_deinit(wpa_s);
  524. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  525. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  526. os_memset(&params, 0, sizeof(params));
  527. params.ssid = ssid->ssid;
  528. params.ssid_len = ssid->ssid_len;
  529. switch (ssid->mode) {
  530. case WPAS_MODE_AP:
  531. case WPAS_MODE_P2P_GO:
  532. case WPAS_MODE_P2P_GROUP_FORMATION:
  533. params.mode = IEEE80211_MODE_AP;
  534. break;
  535. default:
  536. return -1;
  537. }
  538. if (ssid->frequency == 0)
  539. ssid->frequency = 2462; /* default channel 11 */
  540. params.freq.freq = ssid->frequency;
  541. params.wpa_proto = ssid->proto;
  542. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  543. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  544. else
  545. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  546. params.key_mgmt_suite = wpa_s->key_mgmt;
  547. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  548. 1);
  549. if (wpa_s->pairwise_cipher < 0) {
  550. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  551. "cipher.");
  552. return -1;
  553. }
  554. params.pairwise_suite = wpa_s->pairwise_cipher;
  555. params.group_suite = params.pairwise_suite;
  556. #ifdef CONFIG_P2P
  557. if (ssid->mode == WPAS_MODE_P2P_GO ||
  558. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  559. params.p2p = 1;
  560. #endif /* CONFIG_P2P */
  561. if (wpa_s->p2pdev->set_ap_uapsd)
  562. params.uapsd = wpa_s->p2pdev->ap_uapsd;
  563. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  564. params.uapsd = 1; /* mandatory for P2P GO */
  565. else
  566. params.uapsd = -1;
  567. if (ieee80211_is_dfs(params.freq.freq))
  568. params.freq.freq = 0; /* set channel after CAC */
  569. if (wpa_drv_associate(wpa_s, &params) < 0) {
  570. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  571. return -1;
  572. }
  573. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  574. if (hapd_iface == NULL)
  575. return -1;
  576. hapd_iface->owner = wpa_s;
  577. hapd_iface->drv_flags = wpa_s->drv_flags;
  578. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  579. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  580. hapd_iface->extended_capa = wpa_s->extended_capa;
  581. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  582. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  583. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  584. if (conf == NULL) {
  585. wpa_supplicant_ap_deinit(wpa_s);
  586. return -1;
  587. }
  588. /* Use the maximum oper channel width if it's given. */
  589. if (ssid->max_oper_chwidth)
  590. conf->vht_oper_chwidth = ssid->max_oper_chwidth;
  591. ieee80211_freq_to_chan(ssid->vht_center_freq2,
  592. &conf->vht_oper_centr_freq_seg1_idx);
  593. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  594. wpa_s->conf->wmm_ac_params,
  595. sizeof(wpa_s->conf->wmm_ac_params));
  596. if (params.uapsd > 0) {
  597. conf->bss[0]->wmm_enabled = 1;
  598. conf->bss[0]->wmm_uapsd = 1;
  599. }
  600. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  601. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  602. wpa_supplicant_ap_deinit(wpa_s);
  603. return -1;
  604. }
  605. #ifdef CONFIG_P2P
  606. if (ssid->mode == WPAS_MODE_P2P_GO)
  607. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  608. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  609. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  610. P2P_GROUP_FORMATION;
  611. #endif /* CONFIG_P2P */
  612. hapd_iface->num_bss = conf->num_bss;
  613. hapd_iface->bss = os_calloc(conf->num_bss,
  614. sizeof(struct hostapd_data *));
  615. if (hapd_iface->bss == NULL) {
  616. wpa_supplicant_ap_deinit(wpa_s);
  617. return -1;
  618. }
  619. for (i = 0; i < conf->num_bss; i++) {
  620. hapd_iface->bss[i] =
  621. hostapd_alloc_bss_data(hapd_iface, conf,
  622. conf->bss[i]);
  623. if (hapd_iface->bss[i] == NULL) {
  624. wpa_supplicant_ap_deinit(wpa_s);
  625. return -1;
  626. }
  627. hapd_iface->bss[i]->msg_ctx = wpa_s;
  628. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->p2pdev;
  629. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  630. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  631. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  632. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  633. hostapd_register_probereq_cb(hapd_iface->bss[i],
  634. ap_probe_req_rx, wpa_s);
  635. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  636. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  637. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  638. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  639. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  640. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  641. #ifdef CONFIG_P2P
  642. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  643. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  644. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  645. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  646. ssid);
  647. #endif /* CONFIG_P2P */
  648. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  649. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  650. #ifdef CONFIG_TESTING_OPTIONS
  651. hapd_iface->bss[i]->ext_eapol_frame_io =
  652. wpa_s->ext_eapol_frame_io;
  653. #endif /* CONFIG_TESTING_OPTIONS */
  654. }
  655. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  656. hapd_iface->bss[0]->driver = wpa_s->driver;
  657. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  658. wpa_s->current_ssid = ssid;
  659. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  660. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  661. wpa_s->assoc_freq = ssid->frequency;
  662. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  663. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  664. wpa_supplicant_ap_deinit(wpa_s);
  665. return -1;
  666. }
  667. return 0;
  668. }
  669. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  670. {
  671. #ifdef CONFIG_WPS
  672. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  673. #endif /* CONFIG_WPS */
  674. if (wpa_s->ap_iface == NULL)
  675. return;
  676. wpa_s->current_ssid = NULL;
  677. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  678. wpa_s->assoc_freq = 0;
  679. wpas_p2p_ap_deinit(wpa_s);
  680. wpa_s->ap_iface->driver_ap_teardown =
  681. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  682. hostapd_interface_deinit(wpa_s->ap_iface);
  683. hostapd_interface_free(wpa_s->ap_iface);
  684. wpa_s->ap_iface = NULL;
  685. wpa_drv_deinit_ap(wpa_s);
  686. wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR
  687. " reason=%d locally_generated=1",
  688. MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING);
  689. }
  690. void ap_tx_status(void *ctx, const u8 *addr,
  691. const u8 *buf, size_t len, int ack)
  692. {
  693. #ifdef NEED_AP_MLME
  694. struct wpa_supplicant *wpa_s = ctx;
  695. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  696. #endif /* NEED_AP_MLME */
  697. }
  698. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  699. const u8 *data, size_t len, int ack)
  700. {
  701. #ifdef NEED_AP_MLME
  702. struct wpa_supplicant *wpa_s = ctx;
  703. if (!wpa_s->ap_iface)
  704. return;
  705. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  706. #endif /* NEED_AP_MLME */
  707. }
  708. void ap_client_poll_ok(void *ctx, const u8 *addr)
  709. {
  710. #ifdef NEED_AP_MLME
  711. struct wpa_supplicant *wpa_s = ctx;
  712. if (wpa_s->ap_iface)
  713. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  714. #endif /* NEED_AP_MLME */
  715. }
  716. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  717. {
  718. #ifdef NEED_AP_MLME
  719. struct wpa_supplicant *wpa_s = ctx;
  720. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  721. #endif /* NEED_AP_MLME */
  722. }
  723. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  724. {
  725. #ifdef NEED_AP_MLME
  726. struct wpa_supplicant *wpa_s = ctx;
  727. struct hostapd_frame_info fi;
  728. os_memset(&fi, 0, sizeof(fi));
  729. fi.datarate = rx_mgmt->datarate;
  730. fi.ssi_signal = rx_mgmt->ssi_signal;
  731. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  732. rx_mgmt->frame_len, &fi);
  733. #endif /* NEED_AP_MLME */
  734. }
  735. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  736. {
  737. #ifdef NEED_AP_MLME
  738. struct wpa_supplicant *wpa_s = ctx;
  739. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  740. #endif /* NEED_AP_MLME */
  741. }
  742. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  743. const u8 *src_addr, const u8 *buf, size_t len)
  744. {
  745. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  746. }
  747. #ifdef CONFIG_WPS
  748. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  749. const u8 *p2p_dev_addr)
  750. {
  751. if (!wpa_s->ap_iface)
  752. return -1;
  753. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  754. p2p_dev_addr);
  755. }
  756. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  757. {
  758. struct wps_registrar *reg;
  759. int reg_sel = 0, wps_sta = 0;
  760. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  761. return -1;
  762. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  763. reg_sel = wps_registrar_wps_cancel(reg);
  764. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  765. ap_sta_wps_cancel, NULL);
  766. if (!reg_sel && !wps_sta) {
  767. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  768. "time");
  769. return -1;
  770. }
  771. /*
  772. * There are 2 cases to return wps cancel as success:
  773. * 1. When wps cancel was initiated but no connection has been
  774. * established with client yet.
  775. * 2. Client is in the middle of exchanging WPS messages.
  776. */
  777. return 0;
  778. }
  779. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  780. const char *pin, char *buf, size_t buflen,
  781. int timeout)
  782. {
  783. int ret, ret_len = 0;
  784. if (!wpa_s->ap_iface)
  785. return -1;
  786. if (pin == NULL) {
  787. unsigned int rpin;
  788. if (wps_generate_pin(&rpin) < 0)
  789. return -1;
  790. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  791. if (os_snprintf_error(buflen, ret_len))
  792. return -1;
  793. pin = buf;
  794. } else if (buf) {
  795. ret_len = os_snprintf(buf, buflen, "%s", pin);
  796. if (os_snprintf_error(buflen, ret_len))
  797. return -1;
  798. }
  799. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  800. timeout);
  801. if (ret)
  802. return -1;
  803. return ret_len;
  804. }
  805. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  806. {
  807. struct wpa_supplicant *wpa_s = eloop_data;
  808. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  809. wpas_wps_ap_pin_disable(wpa_s);
  810. }
  811. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  812. {
  813. struct hostapd_data *hapd;
  814. if (wpa_s->ap_iface == NULL)
  815. return;
  816. hapd = wpa_s->ap_iface->bss[0];
  817. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  818. hapd->ap_pin_failures = 0;
  819. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  820. if (timeout > 0)
  821. eloop_register_timeout(timeout, 0,
  822. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  823. }
  824. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  825. {
  826. struct hostapd_data *hapd;
  827. if (wpa_s->ap_iface == NULL)
  828. return;
  829. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  830. hapd = wpa_s->ap_iface->bss[0];
  831. os_free(hapd->conf->ap_pin);
  832. hapd->conf->ap_pin = NULL;
  833. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  834. }
  835. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  836. {
  837. struct hostapd_data *hapd;
  838. unsigned int pin;
  839. char pin_txt[9];
  840. if (wpa_s->ap_iface == NULL)
  841. return NULL;
  842. hapd = wpa_s->ap_iface->bss[0];
  843. if (wps_generate_pin(&pin) < 0)
  844. return NULL;
  845. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  846. os_free(hapd->conf->ap_pin);
  847. hapd->conf->ap_pin = os_strdup(pin_txt);
  848. if (hapd->conf->ap_pin == NULL)
  849. return NULL;
  850. wpas_wps_ap_pin_enable(wpa_s, timeout);
  851. return hapd->conf->ap_pin;
  852. }
  853. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  854. {
  855. struct hostapd_data *hapd;
  856. if (wpa_s->ap_iface == NULL)
  857. return NULL;
  858. hapd = wpa_s->ap_iface->bss[0];
  859. return hapd->conf->ap_pin;
  860. }
  861. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  862. int timeout)
  863. {
  864. struct hostapd_data *hapd;
  865. char pin_txt[9];
  866. int ret;
  867. if (wpa_s->ap_iface == NULL)
  868. return -1;
  869. hapd = wpa_s->ap_iface->bss[0];
  870. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  871. if (os_snprintf_error(sizeof(pin_txt), ret))
  872. return -1;
  873. os_free(hapd->conf->ap_pin);
  874. hapd->conf->ap_pin = os_strdup(pin_txt);
  875. if (hapd->conf->ap_pin == NULL)
  876. return -1;
  877. wpas_wps_ap_pin_enable(wpa_s, timeout);
  878. return 0;
  879. }
  880. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  881. {
  882. struct hostapd_data *hapd;
  883. if (wpa_s->ap_iface == NULL)
  884. return;
  885. hapd = wpa_s->ap_iface->bss[0];
  886. /*
  887. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  888. * PIN if this happens multiple times to slow down brute force attacks.
  889. */
  890. hapd->ap_pin_failures++;
  891. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  892. hapd->ap_pin_failures);
  893. if (hapd->ap_pin_failures < 3)
  894. return;
  895. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  896. hapd->ap_pin_failures = 0;
  897. os_free(hapd->conf->ap_pin);
  898. hapd->conf->ap_pin = NULL;
  899. }
  900. #ifdef CONFIG_WPS_NFC
  901. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  902. int ndef)
  903. {
  904. struct hostapd_data *hapd;
  905. if (wpa_s->ap_iface == NULL)
  906. return NULL;
  907. hapd = wpa_s->ap_iface->bss[0];
  908. return hostapd_wps_nfc_config_token(hapd, ndef);
  909. }
  910. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  911. int ndef)
  912. {
  913. struct hostapd_data *hapd;
  914. if (wpa_s->ap_iface == NULL)
  915. return NULL;
  916. hapd = wpa_s->ap_iface->bss[0];
  917. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  918. }
  919. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  920. const struct wpabuf *req,
  921. const struct wpabuf *sel)
  922. {
  923. struct hostapd_data *hapd;
  924. if (wpa_s->ap_iface == NULL)
  925. return -1;
  926. hapd = wpa_s->ap_iface->bss[0];
  927. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  928. }
  929. #endif /* CONFIG_WPS_NFC */
  930. #endif /* CONFIG_WPS */
  931. #ifdef CONFIG_CTRL_IFACE
  932. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  933. char *buf, size_t buflen)
  934. {
  935. struct hostapd_data *hapd;
  936. if (wpa_s->ap_iface)
  937. hapd = wpa_s->ap_iface->bss[0];
  938. else if (wpa_s->ifmsh)
  939. hapd = wpa_s->ifmsh->bss[0];
  940. else
  941. return -1;
  942. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  943. }
  944. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  945. char *buf, size_t buflen)
  946. {
  947. struct hostapd_data *hapd;
  948. if (wpa_s->ap_iface)
  949. hapd = wpa_s->ap_iface->bss[0];
  950. else if (wpa_s->ifmsh)
  951. hapd = wpa_s->ifmsh->bss[0];
  952. else
  953. return -1;
  954. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  955. }
  956. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  957. char *buf, size_t buflen)
  958. {
  959. struct hostapd_data *hapd;
  960. if (wpa_s->ap_iface)
  961. hapd = wpa_s->ap_iface->bss[0];
  962. else if (wpa_s->ifmsh)
  963. hapd = wpa_s->ifmsh->bss[0];
  964. else
  965. return -1;
  966. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  967. }
  968. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  969. const char *txtaddr)
  970. {
  971. if (wpa_s->ap_iface == NULL)
  972. return -1;
  973. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  974. txtaddr);
  975. }
  976. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  977. const char *txtaddr)
  978. {
  979. if (wpa_s->ap_iface == NULL)
  980. return -1;
  981. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  982. txtaddr);
  983. }
  984. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  985. size_t buflen, int verbose)
  986. {
  987. char *pos = buf, *end = buf + buflen;
  988. int ret;
  989. struct hostapd_bss_config *conf;
  990. if (wpa_s->ap_iface == NULL)
  991. return -1;
  992. conf = wpa_s->ap_iface->bss[0]->conf;
  993. if (conf->wpa == 0)
  994. return 0;
  995. ret = os_snprintf(pos, end - pos,
  996. "pairwise_cipher=%s\n"
  997. "group_cipher=%s\n"
  998. "key_mgmt=%s\n",
  999. wpa_cipher_txt(conf->rsn_pairwise),
  1000. wpa_cipher_txt(conf->wpa_group),
  1001. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  1002. conf->wpa));
  1003. if (os_snprintf_error(end - pos, ret))
  1004. return pos - buf;
  1005. pos += ret;
  1006. return pos - buf;
  1007. }
  1008. #endif /* CONFIG_CTRL_IFACE */
  1009. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  1010. {
  1011. struct hostapd_iface *iface = wpa_s->ap_iface;
  1012. struct wpa_ssid *ssid = wpa_s->current_ssid;
  1013. struct hostapd_data *hapd;
  1014. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  1015. ssid->mode == WPAS_MODE_INFRA ||
  1016. ssid->mode == WPAS_MODE_IBSS)
  1017. return -1;
  1018. #ifdef CONFIG_P2P
  1019. if (ssid->mode == WPAS_MODE_P2P_GO)
  1020. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  1021. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  1022. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  1023. P2P_GROUP_FORMATION;
  1024. #endif /* CONFIG_P2P */
  1025. hapd = iface->bss[0];
  1026. if (hapd->drv_priv == NULL)
  1027. return -1;
  1028. ieee802_11_set_beacons(iface);
  1029. hostapd_set_ap_wps_ie(hapd);
  1030. return 0;
  1031. }
  1032. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  1033. struct csa_settings *settings)
  1034. {
  1035. #ifdef NEED_AP_MLME
  1036. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1037. return -1;
  1038. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  1039. #else /* NEED_AP_MLME */
  1040. return -1;
  1041. #endif /* NEED_AP_MLME */
  1042. }
  1043. #ifdef CONFIG_CTRL_IFACE
  1044. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  1045. {
  1046. struct csa_settings settings;
  1047. int ret = hostapd_parse_csa_settings(pos, &settings);
  1048. if (ret)
  1049. return ret;
  1050. return ap_switch_channel(wpa_s, &settings);
  1051. }
  1052. #endif /* CONFIG_CTRL_IFACE */
  1053. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  1054. int offset, int width, int cf1, int cf2)
  1055. {
  1056. if (!wpa_s->ap_iface)
  1057. return;
  1058. wpa_s->assoc_freq = freq;
  1059. if (wpa_s->current_ssid)
  1060. wpa_s->current_ssid->frequency = freq;
  1061. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht,
  1062. offset, width, cf1, cf2);
  1063. }
  1064. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  1065. const u8 *addr)
  1066. {
  1067. struct hostapd_data *hapd;
  1068. struct hostapd_bss_config *conf;
  1069. if (!wpa_s->ap_iface)
  1070. return -1;
  1071. if (addr)
  1072. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  1073. MAC2STR(addr));
  1074. else
  1075. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  1076. hapd = wpa_s->ap_iface->bss[0];
  1077. conf = hapd->conf;
  1078. os_free(conf->accept_mac);
  1079. conf->accept_mac = NULL;
  1080. conf->num_accept_mac = 0;
  1081. os_free(conf->deny_mac);
  1082. conf->deny_mac = NULL;
  1083. conf->num_deny_mac = 0;
  1084. if (addr == NULL) {
  1085. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  1086. return 0;
  1087. }
  1088. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  1089. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  1090. if (conf->accept_mac == NULL)
  1091. return -1;
  1092. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  1093. conf->num_accept_mac = 1;
  1094. return 0;
  1095. }
  1096. #ifdef CONFIG_WPS_NFC
  1097. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  1098. const struct wpabuf *pw, const u8 *pubkey_hash)
  1099. {
  1100. struct hostapd_data *hapd;
  1101. struct wps_context *wps;
  1102. if (!wpa_s->ap_iface)
  1103. return -1;
  1104. hapd = wpa_s->ap_iface->bss[0];
  1105. wps = hapd->wps;
  1106. if (wpa_s->p2pdev->conf->wps_nfc_dh_pubkey == NULL ||
  1107. wpa_s->p2pdev->conf->wps_nfc_dh_privkey == NULL) {
  1108. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1109. return -1;
  1110. }
  1111. dh5_free(wps->dh_ctx);
  1112. wpabuf_free(wps->dh_pubkey);
  1113. wpabuf_free(wps->dh_privkey);
  1114. wps->dh_privkey = wpabuf_dup(
  1115. wpa_s->p2pdev->conf->wps_nfc_dh_privkey);
  1116. wps->dh_pubkey = wpabuf_dup(
  1117. wpa_s->p2pdev->conf->wps_nfc_dh_pubkey);
  1118. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1119. wps->dh_ctx = NULL;
  1120. wpabuf_free(wps->dh_pubkey);
  1121. wps->dh_pubkey = NULL;
  1122. wpabuf_free(wps->dh_privkey);
  1123. wps->dh_privkey = NULL;
  1124. return -1;
  1125. }
  1126. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1127. if (wps->dh_ctx == NULL)
  1128. return -1;
  1129. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1130. pw_id,
  1131. pw ? wpabuf_head(pw) : NULL,
  1132. pw ? wpabuf_len(pw) : 0, 1);
  1133. }
  1134. #endif /* CONFIG_WPS_NFC */
  1135. #ifdef CONFIG_CTRL_IFACE
  1136. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1137. {
  1138. struct hostapd_data *hapd;
  1139. if (!wpa_s->ap_iface)
  1140. return -1;
  1141. hapd = wpa_s->ap_iface->bss[0];
  1142. return hostapd_ctrl_iface_stop_ap(hapd);
  1143. }
  1144. int wpas_ap_pmksa_cache_list(struct wpa_supplicant *wpa_s, char *buf,
  1145. size_t len)
  1146. {
  1147. size_t reply_len = 0, i;
  1148. char ap_delimiter[] = "---- AP ----\n";
  1149. char mesh_delimiter[] = "---- mesh ----\n";
  1150. size_t dlen;
  1151. if (wpa_s->ap_iface) {
  1152. dlen = os_strlen(ap_delimiter);
  1153. if (dlen > len - reply_len)
  1154. return reply_len;
  1155. os_memcpy(&buf[reply_len], ap_delimiter, dlen);
  1156. reply_len += dlen;
  1157. for (i = 0; i < wpa_s->ap_iface->num_bss; i++) {
  1158. reply_len += hostapd_ctrl_iface_pmksa_list(
  1159. wpa_s->ap_iface->bss[i],
  1160. &buf[reply_len], len - reply_len);
  1161. }
  1162. }
  1163. if (wpa_s->ifmsh) {
  1164. dlen = os_strlen(mesh_delimiter);
  1165. if (dlen > len - reply_len)
  1166. return reply_len;
  1167. os_memcpy(&buf[reply_len], mesh_delimiter, dlen);
  1168. reply_len += dlen;
  1169. reply_len += hostapd_ctrl_iface_pmksa_list(
  1170. wpa_s->ifmsh->bss[0], &buf[reply_len],
  1171. len - reply_len);
  1172. }
  1173. return reply_len;
  1174. }
  1175. void wpas_ap_pmksa_cache_flush(struct wpa_supplicant *wpa_s)
  1176. {
  1177. size_t i;
  1178. if (wpa_s->ap_iface) {
  1179. for (i = 0; i < wpa_s->ap_iface->num_bss; i++)
  1180. hostapd_ctrl_iface_pmksa_flush(wpa_s->ap_iface->bss[i]);
  1181. }
  1182. if (wpa_s->ifmsh)
  1183. hostapd_ctrl_iface_pmksa_flush(wpa_s->ifmsh->bss[0]);
  1184. }
  1185. #endif /* CONFIG_CTRL_IFACE */
  1186. #ifdef NEED_AP_MLME
  1187. void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s,
  1188. struct dfs_event *radar)
  1189. {
  1190. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1191. return;
  1192. wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq);
  1193. hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq,
  1194. radar->ht_enabled, radar->chan_offset,
  1195. radar->chan_width,
  1196. radar->cf1, radar->cf2);
  1197. }
  1198. void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s,
  1199. struct dfs_event *radar)
  1200. {
  1201. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1202. return;
  1203. wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq);
  1204. hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq,
  1205. radar->ht_enabled, radar->chan_offset,
  1206. radar->chan_width, radar->cf1, radar->cf2);
  1207. }
  1208. void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s,
  1209. struct dfs_event *radar)
  1210. {
  1211. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1212. return;
  1213. wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq);
  1214. hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq,
  1215. radar->ht_enabled, radar->chan_offset,
  1216. radar->chan_width, radar->cf1, radar->cf2);
  1217. }
  1218. void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s,
  1219. struct dfs_event *radar)
  1220. {
  1221. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1222. return;
  1223. wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq);
  1224. hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq,
  1225. radar->ht_enabled, radar->chan_offset,
  1226. radar->chan_width, radar->cf1, radar->cf2);
  1227. }
  1228. void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s,
  1229. struct dfs_event *radar)
  1230. {
  1231. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1232. return;
  1233. wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq);
  1234. hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq,
  1235. radar->ht_enabled, radar->chan_offset,
  1236. radar->chan_width, radar->cf1, radar->cf2);
  1237. }
  1238. #endif /* NEED_AP_MLME */
  1239. void ap_periodic(struct wpa_supplicant *wpa_s)
  1240. {
  1241. if (wpa_s->ap_iface)
  1242. hostapd_periodic_iface(wpa_s->ap_iface);
  1243. }