tkip.c 10 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /*
  2. * Temporal Key Integrity Protocol (CCMP)
  3. * Copyright (c) 2010, Jouni Malinen <j@w1.fi>
  4. *
  5. * This program is free software; you can redistribute it and/or modify
  6. * it under the terms of the GNU General Public License version 2 as
  7. * published by the Free Software Foundation.
  8. *
  9. * Alternatively, this software may be distributed under the terms of BSD
  10. * license.
  11. *
  12. * See README and COPYING for more details.
  13. */
  14. #include "utils/includes.h"
  15. #include "utils/common.h"
  16. #include "common/ieee802_11_defs.h"
  17. #include "wlantest.h"
  18. static inline u16 RotR1(u16 val)
  19. {
  20. return (val >> 1) | (val << 15);
  21. }
  22. static inline u8 Lo8(u16 val)
  23. {
  24. return val & 0xff;
  25. }
  26. static inline u8 Hi8(u16 val)
  27. {
  28. return val >> 8;
  29. }
  30. static inline u16 Lo16(u32 val)
  31. {
  32. return val & 0xffff;
  33. }
  34. static inline u16 Hi16(u32 val)
  35. {
  36. return val >> 16;
  37. }
  38. static inline u16 Mk16(u8 hi, u8 lo)
  39. {
  40. return lo | (((u16) hi) << 8);
  41. }
  42. static inline u16 Mk16_le(u16 *v)
  43. {
  44. return le_to_host16(*v);
  45. }
  46. static const u16 Sbox[256] =
  47. {
  48. 0xC6A5, 0xF884, 0xEE99, 0xF68D, 0xFF0D, 0xD6BD, 0xDEB1, 0x9154,
  49. 0x6050, 0x0203, 0xCEA9, 0x567D, 0xE719, 0xB562, 0x4DE6, 0xEC9A,
  50. 0x8F45, 0x1F9D, 0x8940, 0xFA87, 0xEF15, 0xB2EB, 0x8EC9, 0xFB0B,
  51. 0x41EC, 0xB367, 0x5FFD, 0x45EA, 0x23BF, 0x53F7, 0xE496, 0x9B5B,
  52. 0x75C2, 0xE11C, 0x3DAE, 0x4C6A, 0x6C5A, 0x7E41, 0xF502, 0x834F,
  53. 0x685C, 0x51F4, 0xD134, 0xF908, 0xE293, 0xAB73, 0x6253, 0x2A3F,
  54. 0x080C, 0x9552, 0x4665, 0x9D5E, 0x3028, 0x37A1, 0x0A0F, 0x2FB5,
  55. 0x0E09, 0x2436, 0x1B9B, 0xDF3D, 0xCD26, 0x4E69, 0x7FCD, 0xEA9F,
  56. 0x121B, 0x1D9E, 0x5874, 0x342E, 0x362D, 0xDCB2, 0xB4EE, 0x5BFB,
  57. 0xA4F6, 0x764D, 0xB761, 0x7DCE, 0x527B, 0xDD3E, 0x5E71, 0x1397,
  58. 0xA6F5, 0xB968, 0x0000, 0xC12C, 0x4060, 0xE31F, 0x79C8, 0xB6ED,
  59. 0xD4BE, 0x8D46, 0x67D9, 0x724B, 0x94DE, 0x98D4, 0xB0E8, 0x854A,
  60. 0xBB6B, 0xC52A, 0x4FE5, 0xED16, 0x86C5, 0x9AD7, 0x6655, 0x1194,
  61. 0x8ACF, 0xE910, 0x0406, 0xFE81, 0xA0F0, 0x7844, 0x25BA, 0x4BE3,
  62. 0xA2F3, 0x5DFE, 0x80C0, 0x058A, 0x3FAD, 0x21BC, 0x7048, 0xF104,
  63. 0x63DF, 0x77C1, 0xAF75, 0x4263, 0x2030, 0xE51A, 0xFD0E, 0xBF6D,
  64. 0x814C, 0x1814, 0x2635, 0xC32F, 0xBEE1, 0x35A2, 0x88CC, 0x2E39,
  65. 0x9357, 0x55F2, 0xFC82, 0x7A47, 0xC8AC, 0xBAE7, 0x322B, 0xE695,
  66. 0xC0A0, 0x1998, 0x9ED1, 0xA37F, 0x4466, 0x547E, 0x3BAB, 0x0B83,
  67. 0x8CCA, 0xC729, 0x6BD3, 0x283C, 0xA779, 0xBCE2, 0x161D, 0xAD76,
  68. 0xDB3B, 0x6456, 0x744E, 0x141E, 0x92DB, 0x0C0A, 0x486C, 0xB8E4,
  69. 0x9F5D, 0xBD6E, 0x43EF, 0xC4A6, 0x39A8, 0x31A4, 0xD337, 0xF28B,
  70. 0xD532, 0x8B43, 0x6E59, 0xDAB7, 0x018C, 0xB164, 0x9CD2, 0x49E0,
  71. 0xD8B4, 0xACFA, 0xF307, 0xCF25, 0xCAAF, 0xF48E, 0x47E9, 0x1018,
  72. 0x6FD5, 0xF088, 0x4A6F, 0x5C72, 0x3824, 0x57F1, 0x73C7, 0x9751,
  73. 0xCB23, 0xA17C, 0xE89C, 0x3E21, 0x96DD, 0x61DC, 0x0D86, 0x0F85,
  74. 0xE090, 0x7C42, 0x71C4, 0xCCAA, 0x90D8, 0x0605, 0xF701, 0x1C12,
  75. 0xC2A3, 0x6A5F, 0xAEF9, 0x69D0, 0x1791, 0x9958, 0x3A27, 0x27B9,
  76. 0xD938, 0xEB13, 0x2BB3, 0x2233, 0xD2BB, 0xA970, 0x0789, 0x33A7,
  77. 0x2DB6, 0x3C22, 0x1592, 0xC920, 0x8749, 0xAAFF, 0x5078, 0xA57A,
  78. 0x038F, 0x59F8, 0x0980, 0x1A17, 0x65DA, 0xD731, 0x84C6, 0xD0B8,
  79. 0x82C3, 0x29B0, 0x5A77, 0x1E11, 0x7BCB, 0xA8FC, 0x6DD6, 0x2C3A,
  80. };
  81. static inline u16 _S_(u16 v)
  82. {
  83. u16 t = Sbox[Hi8(v)];
  84. return Sbox[Lo8(v)] ^ ((t << 8) | (t >> 8));
  85. }
  86. #define PHASE1_LOOP_COUNT 8
  87. static void tkip_mixing_phase1(u16 *TTAK, const u8 *TK, const u8 *TA, u32 IV32)
  88. {
  89. int i, j;
  90. /* Initialize the 80-bit TTAK from TSC (IV32) and TA[0..5] */
  91. TTAK[0] = Lo16(IV32);
  92. TTAK[1] = Hi16(IV32);
  93. TTAK[2] = Mk16(TA[1], TA[0]);
  94. TTAK[3] = Mk16(TA[3], TA[2]);
  95. TTAK[4] = Mk16(TA[5], TA[4]);
  96. for (i = 0; i < PHASE1_LOOP_COUNT; i++) {
  97. j = 2 * (i & 1);
  98. TTAK[0] += _S_(TTAK[4] ^ Mk16(TK[1 + j], TK[0 + j]));
  99. TTAK[1] += _S_(TTAK[0] ^ Mk16(TK[5 + j], TK[4 + j]));
  100. TTAK[2] += _S_(TTAK[1] ^ Mk16(TK[9 + j], TK[8 + j]));
  101. TTAK[3] += _S_(TTAK[2] ^ Mk16(TK[13 + j], TK[12 + j]));
  102. TTAK[4] += _S_(TTAK[3] ^ Mk16(TK[1 + j], TK[0 + j])) + i;
  103. }
  104. }
  105. static void tkip_mixing_phase2(u8 *WEPSeed, const u8 *TK, const u16 *TTAK,
  106. u16 IV16)
  107. {
  108. u16 PPK[6];
  109. /* Step 1 - make copy of TTAK and bring in TSC */
  110. PPK[0] = TTAK[0];
  111. PPK[1] = TTAK[1];
  112. PPK[2] = TTAK[2];
  113. PPK[3] = TTAK[3];
  114. PPK[4] = TTAK[4];
  115. PPK[5] = TTAK[4] + IV16;
  116. /* Step 2 - 96-bit bijective mixing using S-box */
  117. PPK[0] += _S_(PPK[5] ^ Mk16_le((u16 *) &TK[0]));
  118. PPK[1] += _S_(PPK[0] ^ Mk16_le((u16 *) &TK[2]));
  119. PPK[2] += _S_(PPK[1] ^ Mk16_le((u16 *) &TK[4]));
  120. PPK[3] += _S_(PPK[2] ^ Mk16_le((u16 *) &TK[6]));
  121. PPK[4] += _S_(PPK[3] ^ Mk16_le((u16 *) &TK[8]));
  122. PPK[5] += _S_(PPK[4] ^ Mk16_le((u16 *) &TK[10]));
  123. PPK[0] += RotR1(PPK[5] ^ Mk16_le((u16 *) &TK[12]));
  124. PPK[1] += RotR1(PPK[0] ^ Mk16_le((u16 *) &TK[14]));
  125. PPK[2] += RotR1(PPK[1]);
  126. PPK[3] += RotR1(PPK[2]);
  127. PPK[4] += RotR1(PPK[3]);
  128. PPK[5] += RotR1(PPK[4]);
  129. /* Step 3 - bring in last of TK bits, assign 24-bit WEP IV value
  130. * WEPSeed[0..2] is transmitted as WEP IV */
  131. WEPSeed[0] = Hi8(IV16);
  132. WEPSeed[1] = (Hi8(IV16) | 0x20) & 0x7F;
  133. WEPSeed[2] = Lo8(IV16);
  134. WEPSeed[3] = Lo8((PPK[5] ^ Mk16_le((u16 *) &TK[0])) >> 1);
  135. WPA_PUT_LE16(&WEPSeed[4], PPK[0]);
  136. WPA_PUT_LE16(&WEPSeed[6], PPK[1]);
  137. WPA_PUT_LE16(&WEPSeed[8], PPK[2]);
  138. WPA_PUT_LE16(&WEPSeed[10], PPK[3]);
  139. WPA_PUT_LE16(&WEPSeed[12], PPK[4]);
  140. WPA_PUT_LE16(&WEPSeed[14], PPK[5]);
  141. }
  142. static void wep_crypt(u8 *key, u8 *buf, size_t plen)
  143. {
  144. u32 i, j, k;
  145. u8 S[256];
  146. #define S_SWAP(a,b) do { u8 t = S[a]; S[a] = S[b]; S[b] = t; } while(0)
  147. u8 *pos;
  148. /* Setup RC4 state */
  149. for (i = 0; i < 256; i++)
  150. S[i] = i;
  151. j = 0;
  152. for (i = 0; i < 256; i++) {
  153. j = (j + S[i] + key[i & 0x0f]) & 0xff;
  154. S_SWAP(i, j);
  155. }
  156. /* Apply RC4 to data */
  157. pos = buf;
  158. i = j = 0;
  159. for (k = 0; k < plen; k++) {
  160. i = (i + 1) & 0xff;
  161. j = (j + S[i]) & 0xff;
  162. S_SWAP(i, j);
  163. *pos ^= S[(S[i] + S[j]) & 0xff];
  164. pos++;
  165. }
  166. }
  167. static inline u32 rotl(u32 val, int bits)
  168. {
  169. return (val << bits) | (val >> (32 - bits));
  170. }
  171. static inline u32 rotr(u32 val, int bits)
  172. {
  173. return (val >> bits) | (val << (32 - bits));
  174. }
  175. static inline u32 xswap(u32 val)
  176. {
  177. return ((val & 0x00ff00ff) << 8) | ((val & 0xff00ff00) >> 8);
  178. }
  179. #define michael_block(l, r) \
  180. do { \
  181. r ^= rotl(l, 17); \
  182. l += r; \
  183. r ^= xswap(l); \
  184. l += r; \
  185. r ^= rotl(l, 3); \
  186. l += r; \
  187. r ^= rotr(l, 2); \
  188. l += r; \
  189. } while (0)
  190. static void michael_mic(const u8 *key, const u8 *hdr, const u8 *data,
  191. size_t data_len, u8 *mic)
  192. {
  193. u32 l, r;
  194. int i, blocks, last;
  195. l = WPA_GET_LE32(key);
  196. r = WPA_GET_LE32(key + 4);
  197. /* Michael MIC pseudo header: DA, SA, 3 x 0, Priority */
  198. l ^= WPA_GET_LE32(hdr);
  199. michael_block(l, r);
  200. l ^= WPA_GET_LE32(&hdr[4]);
  201. michael_block(l, r);
  202. l ^= WPA_GET_LE32(&hdr[8]);
  203. michael_block(l, r);
  204. l ^= WPA_GET_LE32(&hdr[12]);
  205. michael_block(l, r);
  206. /* 32-bit blocks of data */
  207. blocks = data_len / 4;
  208. last = data_len % 4;
  209. for (i = 0; i < blocks; i++) {
  210. l ^= WPA_GET_LE32(&data[4 * i]);
  211. michael_block(l, r);
  212. }
  213. /* Last block and padding (0x5a, 4..7 x 0) */
  214. switch (last) {
  215. case 0:
  216. l ^= 0x5a;
  217. break;
  218. case 1:
  219. l ^= data[4 * i] | 0x5a00;
  220. break;
  221. case 2:
  222. l ^= data[4 * i] | (data[4 * i + 1] << 8) | 0x5a0000;
  223. break;
  224. case 3:
  225. l ^= data[4 * i] | (data[4 * i + 1] << 8) |
  226. (data[4 * i + 2] << 16) | 0x5a000000;
  227. break;
  228. }
  229. michael_block(l, r);
  230. /* l ^= 0; */
  231. michael_block(l, r);
  232. WPA_PUT_LE32(mic, l);
  233. WPA_PUT_LE32(mic + 4, r);
  234. }
  235. static void michael_mic_hdr(const struct ieee80211_hdr *hdr11, u8 *hdr)
  236. {
  237. int hdrlen = 24;
  238. u16 fc = le_to_host16(hdr11->frame_control);
  239. switch (fc & (WLAN_FC_FROMDS | WLAN_FC_TODS)) {
  240. case WLAN_FC_TODS:
  241. os_memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  242. os_memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  243. break;
  244. case WLAN_FC_FROMDS:
  245. os_memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  246. os_memcpy(hdr + ETH_ALEN, hdr11->addr3, ETH_ALEN); /* SA */
  247. break;
  248. case WLAN_FC_FROMDS | WLAN_FC_TODS:
  249. os_memcpy(hdr, hdr11->addr3, ETH_ALEN); /* DA */
  250. os_memcpy(hdr + ETH_ALEN, hdr11 + 1, ETH_ALEN); /* SA */
  251. hdrlen += ETH_ALEN;
  252. break;
  253. case 0:
  254. os_memcpy(hdr, hdr11->addr1, ETH_ALEN); /* DA */
  255. os_memcpy(hdr + ETH_ALEN, hdr11->addr2, ETH_ALEN); /* SA */
  256. break;
  257. }
  258. if (WLAN_FC_GET_TYPE(fc) == WLAN_FC_TYPE_DATA &&
  259. (WLAN_FC_GET_STYPE(fc) & 0x08)) {
  260. const u8 *qos = ((const u8 *) hdr11) + hdrlen;
  261. hdr[12] = qos[0] & 0x0f; /* priority */
  262. } else
  263. hdr[12] = 0; /* priority */
  264. hdr[13] = hdr[14] = hdr[15] = 0; /* reserved */
  265. }
  266. u8 * tkip_decrypt(const u8 *tk, const struct ieee80211_hdr *hdr,
  267. const u8 *data, size_t data_len, size_t *decrypted_len)
  268. {
  269. u16 iv16;
  270. u32 iv32;
  271. u16 ttak[5];
  272. u8 rc4key[16];
  273. u8 *plain;
  274. size_t plain_len;
  275. u32 icv, rx_icv;
  276. const u8 *mic_key;
  277. u8 michael_hdr[16];
  278. u8 mic[8];
  279. u16 fc = le_to_host16(hdr->frame_control);
  280. if (data_len < 8 + 4)
  281. return NULL;
  282. iv16 = (data[0] << 8) | data[2];
  283. iv32 = WPA_GET_LE32(&data[4]);
  284. wpa_printf(MSG_EXCESSIVE, "TKIP decrypt: iv32=%08x iv16=%04x",
  285. iv32, iv16);
  286. tkip_mixing_phase1(ttak, tk, hdr->addr2, iv32);
  287. wpa_hexdump(MSG_EXCESSIVE, "TKIP TTAK", (u8 *) ttak, sizeof(ttak));
  288. tkip_mixing_phase2(rc4key, tk, ttak, iv16);
  289. wpa_hexdump(MSG_EXCESSIVE, "TKIP RC4KEY", rc4key, sizeof(rc4key));
  290. plain_len = data_len - 8;
  291. plain = os_malloc(plain_len);
  292. if (plain == NULL)
  293. return NULL;
  294. os_memcpy(plain, data + 8, plain_len);
  295. wep_crypt(rc4key, plain, plain_len);
  296. icv = crc32(plain, plain_len - 4);
  297. rx_icv = WPA_GET_LE32(plain + plain_len - 4);
  298. if (icv != rx_icv) {
  299. wpa_printf(MSG_INFO, "TKIP ICV mismatch in frame from " MACSTR,
  300. MAC2STR(hdr->addr2));
  301. wpa_printf(MSG_DEBUG, "TKIP calculated ICV %08x received ICV "
  302. "%08x", icv, rx_icv);
  303. os_free(plain);
  304. return NULL;
  305. }
  306. plain_len -= 4;
  307. /* TODO: MSDU reassembly */
  308. if (plain_len < 8) {
  309. wpa_printf(MSG_INFO, "TKIP: Not enough room for Michael MIC "
  310. "in a frame from " MACSTR, MAC2STR(hdr->addr2));
  311. os_free(plain);
  312. return NULL;
  313. }
  314. michael_mic_hdr(hdr, michael_hdr);
  315. mic_key = tk + ((fc & WLAN_FC_FROMDS) ? 16 : 24);
  316. michael_mic(mic_key, michael_hdr, plain, plain_len - 8, mic);
  317. if (os_memcmp(mic, plain + plain_len - 8, 8) != 0) {
  318. wpa_printf(MSG_INFO, "TKIP: Michael MIC mismatch in a frame "
  319. "from " MACSTR, MAC2STR(hdr->addr2));
  320. wpa_hexdump(MSG_DEBUG, "TKIP: Calculated MIC", mic, 8);
  321. wpa_hexdump(MSG_DEBUG, "TKIP: Received MIC",
  322. plain + plain_len - 8, 8);
  323. os_free(plain);
  324. return NULL;
  325. }
  326. *decrypted_len = plain_len - 8;
  327. return plain;
  328. }
  329. void tkip_get_pn(u8 *pn, const u8 *data)
  330. {
  331. pn[0] = data[7]; /* PN5 */
  332. pn[1] = data[6]; /* PN4 */
  333. pn[2] = data[5]; /* PN3 */
  334. pn[3] = data[4]; /* PN2 */
  335. pn[4] = data[0]; /* PN1 */
  336. pn[5] = data[2]; /* PN0 */
  337. }
  338. u8 * tkip_encrypt(const u8 *tk, u8 *frame, size_t len, size_t hdrlen, u8 *qos,
  339. u8 *pn, int keyid, size_t *encrypted_len)
  340. {
  341. /* TODO */
  342. return NULL;
  343. }