ap.c 36 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "ap/dfs.h"
  28. #include "wps/wps.h"
  29. #include "common/ieee802_11_defs.h"
  30. #include "config_ssid.h"
  31. #include "config.h"
  32. #include "wpa_supplicant_i.h"
  33. #include "driver_i.h"
  34. #include "p2p_supplicant.h"
  35. #include "ap.h"
  36. #include "ap/sta_info.h"
  37. #include "notify.h"
  38. #ifdef CONFIG_WPS
  39. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  40. #endif /* CONFIG_WPS */
  41. #ifdef CONFIG_IEEE80211N
  42. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  43. struct hostapd_config *conf,
  44. struct hostapd_hw_modes *mode)
  45. {
  46. #ifdef CONFIG_P2P
  47. u8 center_chan = 0;
  48. u8 channel = conf->channel;
  49. if (!conf->secondary_channel)
  50. goto no_vht;
  51. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  52. if (!center_chan)
  53. goto no_vht;
  54. /* Use 80 MHz channel */
  55. conf->vht_oper_chwidth = 1;
  56. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  57. return;
  58. no_vht:
  59. conf->vht_oper_centr_freq_seg0_idx =
  60. channel + conf->secondary_channel * 2;
  61. #else /* CONFIG_P2P */
  62. conf->vht_oper_centr_freq_seg0_idx =
  63. conf->channel + conf->secondary_channel * 2;
  64. #endif /* CONFIG_P2P */
  65. }
  66. #endif /* CONFIG_IEEE80211N */
  67. int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  68. struct wpa_ssid *ssid,
  69. struct hostapd_config *conf)
  70. {
  71. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  72. &conf->channel);
  73. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  74. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  75. ssid->frequency);
  76. return -1;
  77. }
  78. /* TODO: enable HT40 if driver supports it;
  79. * drop to 11b if driver does not support 11g */
  80. #ifdef CONFIG_IEEE80211N
  81. /*
  82. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  83. * and a mask of allowed capabilities within conf->ht_capab.
  84. * Using default config settings for: conf->ht_op_mode_fixed,
  85. * conf->secondary_channel, conf->require_ht
  86. */
  87. if (wpa_s->hw.modes) {
  88. struct hostapd_hw_modes *mode = NULL;
  89. int i, no_ht = 0;
  90. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  91. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  92. mode = &wpa_s->hw.modes[i];
  93. break;
  94. }
  95. }
  96. #ifdef CONFIG_HT_OVERRIDES
  97. if (ssid->disable_ht) {
  98. conf->ieee80211n = 0;
  99. conf->ht_capab = 0;
  100. no_ht = 1;
  101. }
  102. #endif /* CONFIG_HT_OVERRIDES */
  103. if (!no_ht && mode && mode->ht_capab) {
  104. conf->ieee80211n = 1;
  105. #ifdef CONFIG_P2P
  106. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  107. (mode->ht_capab &
  108. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  109. ssid->ht40)
  110. conf->secondary_channel =
  111. wpas_p2p_get_ht40_mode(wpa_s, mode,
  112. conf->channel);
  113. if (conf->secondary_channel)
  114. conf->ht_capab |=
  115. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  116. #endif /* CONFIG_P2P */
  117. /*
  118. * white-list capabilities that won't cause issues
  119. * to connecting stations, while leaving the current
  120. * capabilities intact (currently disabled SMPS).
  121. */
  122. conf->ht_capab |= mode->ht_capab &
  123. (HT_CAP_INFO_GREEN_FIELD |
  124. HT_CAP_INFO_SHORT_GI20MHZ |
  125. HT_CAP_INFO_SHORT_GI40MHZ |
  126. HT_CAP_INFO_RX_STBC_MASK |
  127. HT_CAP_INFO_TX_STBC |
  128. HT_CAP_INFO_MAX_AMSDU_SIZE);
  129. if (mode->vht_capab && ssid->vht) {
  130. conf->ieee80211ac = 1;
  131. wpas_conf_ap_vht(wpa_s, conf, mode);
  132. }
  133. }
  134. }
  135. if (conf->secondary_channel) {
  136. struct wpa_supplicant *iface;
  137. for (iface = wpa_s->global->ifaces; iface; iface = iface->next)
  138. {
  139. if (iface == wpa_s ||
  140. iface->wpa_state < WPA_AUTHENTICATING ||
  141. (int) iface->assoc_freq != ssid->frequency)
  142. continue;
  143. /*
  144. * Do not allow 40 MHz co-ex PRI/SEC switch to force us
  145. * to change our PRI channel since we have an existing,
  146. * concurrent connection on that channel and doing
  147. * multi-channel concurrency is likely to cause more
  148. * harm than using different PRI/SEC selection in
  149. * environment with multiple BSSes on these two channels
  150. * with mixed 20 MHz or PRI channel selection.
  151. */
  152. conf->no_pri_sec_switch = 1;
  153. }
  154. }
  155. #endif /* CONFIG_IEEE80211N */
  156. return 0;
  157. }
  158. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  159. struct wpa_ssid *ssid,
  160. struct hostapd_config *conf)
  161. {
  162. struct hostapd_bss_config *bss = conf->bss[0];
  163. conf->driver = wpa_s->driver;
  164. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  165. if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf))
  166. return -1;
  167. if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) {
  168. conf->ieee80211h = 1;
  169. conf->ieee80211d = 1;
  170. conf->country[0] = wpa_s->conf->country[0];
  171. conf->country[1] = wpa_s->conf->country[1];
  172. }
  173. #ifdef CONFIG_P2P
  174. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  175. (ssid->mode == WPAS_MODE_P2P_GO ||
  176. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  177. /* Remove 802.11b rates from supported and basic rate sets */
  178. int *list = os_malloc(4 * sizeof(int));
  179. if (list) {
  180. list[0] = 60;
  181. list[1] = 120;
  182. list[2] = 240;
  183. list[3] = -1;
  184. }
  185. conf->basic_rates = list;
  186. list = os_malloc(9 * sizeof(int));
  187. if (list) {
  188. list[0] = 60;
  189. list[1] = 90;
  190. list[2] = 120;
  191. list[3] = 180;
  192. list[4] = 240;
  193. list[5] = 360;
  194. list[6] = 480;
  195. list[7] = 540;
  196. list[8] = -1;
  197. }
  198. conf->supported_rates = list;
  199. }
  200. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  201. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  202. if (ssid->p2p_group) {
  203. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  204. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  205. 4);
  206. os_memcpy(bss->ip_addr_start,
  207. wpa_s->parent->conf->ip_addr_start, 4);
  208. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  209. 4);
  210. }
  211. #endif /* CONFIG_P2P */
  212. if (ssid->ssid_len == 0) {
  213. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  214. return -1;
  215. }
  216. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  217. bss->ssid.ssid_len = ssid->ssid_len;
  218. bss->ssid.ssid_set = 1;
  219. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  220. if (ssid->auth_alg)
  221. bss->auth_algs = ssid->auth_alg;
  222. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  223. bss->wpa = ssid->proto;
  224. bss->wpa_key_mgmt = ssid->key_mgmt;
  225. bss->wpa_pairwise = ssid->pairwise_cipher;
  226. if (ssid->psk_set) {
  227. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  228. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  229. if (bss->ssid.wpa_psk == NULL)
  230. return -1;
  231. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  232. bss->ssid.wpa_psk->group = 1;
  233. } else if (ssid->passphrase) {
  234. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  235. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  236. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  237. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  238. int i;
  239. for (i = 0; i < NUM_WEP_KEYS; i++) {
  240. if (ssid->wep_key_len[i] == 0)
  241. continue;
  242. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  243. if (wep->key[i] == NULL)
  244. return -1;
  245. os_memcpy(wep->key[i], ssid->wep_key[i],
  246. ssid->wep_key_len[i]);
  247. wep->len[i] = ssid->wep_key_len[i];
  248. }
  249. wep->idx = ssid->wep_tx_keyidx;
  250. wep->keys_set = 1;
  251. }
  252. if (ssid->ap_max_inactivity)
  253. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  254. if (ssid->dtim_period)
  255. bss->dtim_period = ssid->dtim_period;
  256. else if (wpa_s->conf->dtim_period)
  257. bss->dtim_period = wpa_s->conf->dtim_period;
  258. if (ssid->beacon_int)
  259. conf->beacon_int = ssid->beacon_int;
  260. else if (wpa_s->conf->beacon_int)
  261. conf->beacon_int = wpa_s->conf->beacon_int;
  262. #ifdef CONFIG_P2P
  263. if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) {
  264. wpa_printf(MSG_INFO,
  265. "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it",
  266. wpa_s->conf->p2p_go_ctwindow, conf->beacon_int);
  267. conf->p2p_go_ctwindow = 0;
  268. } else {
  269. conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow;
  270. }
  271. #endif /* CONFIG_P2P */
  272. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  273. bss->rsn_pairwise = bss->wpa_pairwise;
  274. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  275. bss->rsn_pairwise);
  276. if (bss->wpa && bss->ieee802_1x)
  277. bss->ssid.security_policy = SECURITY_WPA;
  278. else if (bss->wpa)
  279. bss->ssid.security_policy = SECURITY_WPA_PSK;
  280. else if (bss->ieee802_1x) {
  281. int cipher = WPA_CIPHER_NONE;
  282. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  283. bss->ssid.wep.default_len = bss->default_wep_key_len;
  284. if (bss->default_wep_key_len)
  285. cipher = bss->default_wep_key_len >= 13 ?
  286. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  287. bss->wpa_group = cipher;
  288. bss->wpa_pairwise = cipher;
  289. bss->rsn_pairwise = cipher;
  290. } else if (bss->ssid.wep.keys_set) {
  291. int cipher = WPA_CIPHER_WEP40;
  292. if (bss->ssid.wep.len[0] >= 13)
  293. cipher = WPA_CIPHER_WEP104;
  294. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  295. bss->wpa_group = cipher;
  296. bss->wpa_pairwise = cipher;
  297. bss->rsn_pairwise = cipher;
  298. } else {
  299. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  300. bss->wpa_group = WPA_CIPHER_NONE;
  301. bss->wpa_pairwise = WPA_CIPHER_NONE;
  302. bss->rsn_pairwise = WPA_CIPHER_NONE;
  303. }
  304. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  305. (bss->wpa_group == WPA_CIPHER_CCMP ||
  306. bss->wpa_group == WPA_CIPHER_GCMP ||
  307. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  308. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  309. /*
  310. * Strong ciphers do not need frequent rekeying, so increase
  311. * the default GTK rekeying period to 24 hours.
  312. */
  313. bss->wpa_group_rekey = 86400;
  314. }
  315. #ifdef CONFIG_IEEE80211W
  316. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  317. bss->ieee80211w = ssid->ieee80211w;
  318. #endif /* CONFIG_IEEE80211W */
  319. #ifdef CONFIG_WPS
  320. /*
  321. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  322. * require user interaction to actually use it. Only the internal
  323. * Registrar is supported.
  324. */
  325. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  326. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  327. goto no_wps;
  328. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  329. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  330. !(bss->wpa & 2)))
  331. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  332. * configuration */
  333. bss->eap_server = 1;
  334. if (!ssid->ignore_broadcast_ssid)
  335. bss->wps_state = 2;
  336. bss->ap_setup_locked = 2;
  337. if (wpa_s->conf->config_methods)
  338. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  339. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  340. WPS_DEV_TYPE_LEN);
  341. if (wpa_s->conf->device_name) {
  342. bss->device_name = os_strdup(wpa_s->conf->device_name);
  343. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  344. }
  345. if (wpa_s->conf->manufacturer)
  346. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  347. if (wpa_s->conf->model_name)
  348. bss->model_name = os_strdup(wpa_s->conf->model_name);
  349. if (wpa_s->conf->model_number)
  350. bss->model_number = os_strdup(wpa_s->conf->model_number);
  351. if (wpa_s->conf->serial_number)
  352. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  353. if (is_nil_uuid(wpa_s->conf->uuid))
  354. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  355. else
  356. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  357. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  358. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  359. no_wps:
  360. #endif /* CONFIG_WPS */
  361. if (wpa_s->max_stations &&
  362. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  363. bss->max_num_sta = wpa_s->max_stations;
  364. else
  365. bss->max_num_sta = wpa_s->conf->max_num_sta;
  366. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  367. if (wpa_s->conf->ap_vendor_elements) {
  368. bss->vendor_elements =
  369. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  370. }
  371. return 0;
  372. }
  373. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  374. {
  375. #ifdef CONFIG_P2P
  376. struct wpa_supplicant *wpa_s = ctx;
  377. const struct ieee80211_mgmt *mgmt;
  378. mgmt = (const struct ieee80211_mgmt *) buf;
  379. if (len < IEEE80211_HDRLEN + 1)
  380. return;
  381. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  382. return;
  383. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  384. mgmt->u.action.category,
  385. buf + IEEE80211_HDRLEN + 1,
  386. len - IEEE80211_HDRLEN - 1, freq);
  387. #endif /* CONFIG_P2P */
  388. }
  389. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  390. union wps_event_data *data)
  391. {
  392. #ifdef CONFIG_P2P
  393. struct wpa_supplicant *wpa_s = ctx;
  394. if (event == WPS_EV_FAIL) {
  395. struct wps_event_fail *fail = &data->fail;
  396. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  397. wpa_s == wpa_s->global->p2p_group_formation) {
  398. /*
  399. * src/ap/wps_hostapd.c has already sent this on the
  400. * main interface, so only send on the parent interface
  401. * here if needed.
  402. */
  403. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  404. "msg=%d config_error=%d",
  405. fail->msg, fail->config_error);
  406. }
  407. wpas_p2p_wps_failed(wpa_s, fail);
  408. }
  409. #endif /* CONFIG_P2P */
  410. }
  411. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  412. int authorized, const u8 *p2p_dev_addr)
  413. {
  414. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  415. }
  416. #ifdef CONFIG_P2P
  417. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  418. const u8 *psk, size_t psk_len)
  419. {
  420. struct wpa_supplicant *wpa_s = ctx;
  421. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  422. return;
  423. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  424. }
  425. #endif /* CONFIG_P2P */
  426. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  427. {
  428. #ifdef CONFIG_P2P
  429. struct wpa_supplicant *wpa_s = ctx;
  430. const struct ieee80211_mgmt *mgmt;
  431. mgmt = (const struct ieee80211_mgmt *) buf;
  432. if (len < IEEE80211_HDRLEN + 1)
  433. return -1;
  434. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  435. mgmt->u.action.category,
  436. buf + IEEE80211_HDRLEN + 1,
  437. len - IEEE80211_HDRLEN - 1, freq);
  438. #endif /* CONFIG_P2P */
  439. return 0;
  440. }
  441. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  442. const u8 *bssid, const u8 *ie, size_t ie_len,
  443. int ssi_signal)
  444. {
  445. struct wpa_supplicant *wpa_s = ctx;
  446. unsigned int freq = 0;
  447. if (wpa_s->ap_iface)
  448. freq = wpa_s->ap_iface->freq;
  449. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  450. freq, ssi_signal);
  451. }
  452. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  453. const u8 *uuid_e)
  454. {
  455. struct wpa_supplicant *wpa_s = ctx;
  456. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  457. }
  458. static void wpas_ap_configured_cb(void *ctx)
  459. {
  460. struct wpa_supplicant *wpa_s = ctx;
  461. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  462. if (wpa_s->ap_configured_cb)
  463. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  464. wpa_s->ap_configured_cb_data);
  465. }
  466. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  467. struct wpa_ssid *ssid)
  468. {
  469. struct wpa_driver_associate_params params;
  470. struct hostapd_iface *hapd_iface;
  471. struct hostapd_config *conf;
  472. size_t i;
  473. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  474. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  475. return -1;
  476. }
  477. wpa_supplicant_ap_deinit(wpa_s);
  478. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  479. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  480. os_memset(&params, 0, sizeof(params));
  481. params.ssid = ssid->ssid;
  482. params.ssid_len = ssid->ssid_len;
  483. switch (ssid->mode) {
  484. case WPAS_MODE_AP:
  485. case WPAS_MODE_P2P_GO:
  486. case WPAS_MODE_P2P_GROUP_FORMATION:
  487. params.mode = IEEE80211_MODE_AP;
  488. break;
  489. default:
  490. return -1;
  491. }
  492. if (ssid->frequency == 0)
  493. ssid->frequency = 2462; /* default channel 11 */
  494. params.freq.freq = ssid->frequency;
  495. params.wpa_proto = ssid->proto;
  496. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  497. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  498. else
  499. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  500. params.key_mgmt_suite = wpa_s->key_mgmt;
  501. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  502. 1);
  503. if (wpa_s->pairwise_cipher < 0) {
  504. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  505. "cipher.");
  506. return -1;
  507. }
  508. params.pairwise_suite = wpa_s->pairwise_cipher;
  509. params.group_suite = params.pairwise_suite;
  510. #ifdef CONFIG_P2P
  511. if (ssid->mode == WPAS_MODE_P2P_GO ||
  512. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  513. params.p2p = 1;
  514. #endif /* CONFIG_P2P */
  515. if (wpa_s->parent->set_ap_uapsd)
  516. params.uapsd = wpa_s->parent->ap_uapsd;
  517. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  518. params.uapsd = 1; /* mandatory for P2P GO */
  519. else
  520. params.uapsd = -1;
  521. if (ieee80211_is_dfs(params.freq.freq))
  522. params.freq.freq = 0; /* set channel after CAC */
  523. if (wpa_drv_associate(wpa_s, &params) < 0) {
  524. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  525. return -1;
  526. }
  527. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  528. if (hapd_iface == NULL)
  529. return -1;
  530. hapd_iface->owner = wpa_s;
  531. hapd_iface->drv_flags = wpa_s->drv_flags;
  532. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  533. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  534. hapd_iface->extended_capa = wpa_s->extended_capa;
  535. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  536. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  537. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  538. if (conf == NULL) {
  539. wpa_supplicant_ap_deinit(wpa_s);
  540. return -1;
  541. }
  542. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  543. wpa_s->conf->wmm_ac_params,
  544. sizeof(wpa_s->conf->wmm_ac_params));
  545. if (params.uapsd > 0) {
  546. conf->bss[0]->wmm_enabled = 1;
  547. conf->bss[0]->wmm_uapsd = 1;
  548. }
  549. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  550. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  551. wpa_supplicant_ap_deinit(wpa_s);
  552. return -1;
  553. }
  554. #ifdef CONFIG_P2P
  555. if (ssid->mode == WPAS_MODE_P2P_GO)
  556. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  557. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  558. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  559. P2P_GROUP_FORMATION;
  560. #endif /* CONFIG_P2P */
  561. hapd_iface->num_bss = conf->num_bss;
  562. hapd_iface->bss = os_calloc(conf->num_bss,
  563. sizeof(struct hostapd_data *));
  564. if (hapd_iface->bss == NULL) {
  565. wpa_supplicant_ap_deinit(wpa_s);
  566. return -1;
  567. }
  568. for (i = 0; i < conf->num_bss; i++) {
  569. hapd_iface->bss[i] =
  570. hostapd_alloc_bss_data(hapd_iface, conf,
  571. conf->bss[i]);
  572. if (hapd_iface->bss[i] == NULL) {
  573. wpa_supplicant_ap_deinit(wpa_s);
  574. return -1;
  575. }
  576. hapd_iface->bss[i]->msg_ctx = wpa_s;
  577. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  578. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  579. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  580. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  581. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  582. hostapd_register_probereq_cb(hapd_iface->bss[i],
  583. ap_probe_req_rx, wpa_s);
  584. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  585. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  586. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  587. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  588. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  589. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  590. #ifdef CONFIG_P2P
  591. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  592. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  593. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  594. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  595. ssid);
  596. #endif /* CONFIG_P2P */
  597. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  598. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  599. #ifdef CONFIG_TESTING_OPTIONS
  600. hapd_iface->bss[i]->ext_eapol_frame_io =
  601. wpa_s->ext_eapol_frame_io;
  602. #endif /* CONFIG_TESTING_OPTIONS */
  603. }
  604. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  605. hapd_iface->bss[0]->driver = wpa_s->driver;
  606. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  607. wpa_s->current_ssid = ssid;
  608. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  609. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  610. wpa_s->assoc_freq = ssid->frequency;
  611. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  612. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  613. wpa_supplicant_ap_deinit(wpa_s);
  614. return -1;
  615. }
  616. return 0;
  617. }
  618. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  619. {
  620. #ifdef CONFIG_WPS
  621. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  622. #endif /* CONFIG_WPS */
  623. if (wpa_s->ap_iface == NULL)
  624. return;
  625. wpa_s->current_ssid = NULL;
  626. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  627. wpa_s->assoc_freq = 0;
  628. wpas_p2p_ap_deinit(wpa_s);
  629. wpa_s->ap_iface->driver_ap_teardown =
  630. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  631. hostapd_interface_deinit(wpa_s->ap_iface);
  632. hostapd_interface_free(wpa_s->ap_iface);
  633. wpa_s->ap_iface = NULL;
  634. wpa_drv_deinit_ap(wpa_s);
  635. wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR
  636. " reason=%d locally_generated=1",
  637. MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING);
  638. }
  639. void ap_tx_status(void *ctx, const u8 *addr,
  640. const u8 *buf, size_t len, int ack)
  641. {
  642. #ifdef NEED_AP_MLME
  643. struct wpa_supplicant *wpa_s = ctx;
  644. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  645. #endif /* NEED_AP_MLME */
  646. }
  647. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  648. const u8 *data, size_t len, int ack)
  649. {
  650. #ifdef NEED_AP_MLME
  651. struct wpa_supplicant *wpa_s = ctx;
  652. if (!wpa_s->ap_iface)
  653. return;
  654. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  655. #endif /* NEED_AP_MLME */
  656. }
  657. void ap_client_poll_ok(void *ctx, const u8 *addr)
  658. {
  659. #ifdef NEED_AP_MLME
  660. struct wpa_supplicant *wpa_s = ctx;
  661. if (wpa_s->ap_iface)
  662. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  663. #endif /* NEED_AP_MLME */
  664. }
  665. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  666. {
  667. #ifdef NEED_AP_MLME
  668. struct wpa_supplicant *wpa_s = ctx;
  669. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  670. #endif /* NEED_AP_MLME */
  671. }
  672. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  673. {
  674. #ifdef NEED_AP_MLME
  675. struct wpa_supplicant *wpa_s = ctx;
  676. struct hostapd_frame_info fi;
  677. os_memset(&fi, 0, sizeof(fi));
  678. fi.datarate = rx_mgmt->datarate;
  679. fi.ssi_signal = rx_mgmt->ssi_signal;
  680. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  681. rx_mgmt->frame_len, &fi);
  682. #endif /* NEED_AP_MLME */
  683. }
  684. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  685. {
  686. #ifdef NEED_AP_MLME
  687. struct wpa_supplicant *wpa_s = ctx;
  688. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  689. #endif /* NEED_AP_MLME */
  690. }
  691. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  692. const u8 *src_addr, const u8 *buf, size_t len)
  693. {
  694. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  695. }
  696. #ifdef CONFIG_WPS
  697. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  698. const u8 *p2p_dev_addr)
  699. {
  700. if (!wpa_s->ap_iface)
  701. return -1;
  702. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  703. p2p_dev_addr);
  704. }
  705. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  706. {
  707. struct wps_registrar *reg;
  708. int reg_sel = 0, wps_sta = 0;
  709. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  710. return -1;
  711. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  712. reg_sel = wps_registrar_wps_cancel(reg);
  713. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  714. ap_sta_wps_cancel, NULL);
  715. if (!reg_sel && !wps_sta) {
  716. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  717. "time");
  718. return -1;
  719. }
  720. /*
  721. * There are 2 cases to return wps cancel as success:
  722. * 1. When wps cancel was initiated but no connection has been
  723. * established with client yet.
  724. * 2. Client is in the middle of exchanging WPS messages.
  725. */
  726. return 0;
  727. }
  728. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  729. const char *pin, char *buf, size_t buflen,
  730. int timeout)
  731. {
  732. int ret, ret_len = 0;
  733. if (!wpa_s->ap_iface)
  734. return -1;
  735. if (pin == NULL) {
  736. unsigned int rpin = wps_generate_pin();
  737. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  738. if (os_snprintf_error(buflen, ret_len))
  739. return -1;
  740. pin = buf;
  741. } else if (buf) {
  742. ret_len = os_snprintf(buf, buflen, "%s", pin);
  743. if (os_snprintf_error(buflen, ret_len))
  744. return -1;
  745. }
  746. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  747. timeout);
  748. if (ret)
  749. return -1;
  750. return ret_len;
  751. }
  752. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  753. {
  754. struct wpa_supplicant *wpa_s = eloop_data;
  755. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  756. wpas_wps_ap_pin_disable(wpa_s);
  757. }
  758. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  759. {
  760. struct hostapd_data *hapd;
  761. if (wpa_s->ap_iface == NULL)
  762. return;
  763. hapd = wpa_s->ap_iface->bss[0];
  764. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  765. hapd->ap_pin_failures = 0;
  766. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  767. if (timeout > 0)
  768. eloop_register_timeout(timeout, 0,
  769. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  770. }
  771. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  772. {
  773. struct hostapd_data *hapd;
  774. if (wpa_s->ap_iface == NULL)
  775. return;
  776. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  777. hapd = wpa_s->ap_iface->bss[0];
  778. os_free(hapd->conf->ap_pin);
  779. hapd->conf->ap_pin = NULL;
  780. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  781. }
  782. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  783. {
  784. struct hostapd_data *hapd;
  785. unsigned int pin;
  786. char pin_txt[9];
  787. if (wpa_s->ap_iface == NULL)
  788. return NULL;
  789. hapd = wpa_s->ap_iface->bss[0];
  790. pin = wps_generate_pin();
  791. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  792. os_free(hapd->conf->ap_pin);
  793. hapd->conf->ap_pin = os_strdup(pin_txt);
  794. if (hapd->conf->ap_pin == NULL)
  795. return NULL;
  796. wpas_wps_ap_pin_enable(wpa_s, timeout);
  797. return hapd->conf->ap_pin;
  798. }
  799. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  800. {
  801. struct hostapd_data *hapd;
  802. if (wpa_s->ap_iface == NULL)
  803. return NULL;
  804. hapd = wpa_s->ap_iface->bss[0];
  805. return hapd->conf->ap_pin;
  806. }
  807. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  808. int timeout)
  809. {
  810. struct hostapd_data *hapd;
  811. char pin_txt[9];
  812. int ret;
  813. if (wpa_s->ap_iface == NULL)
  814. return -1;
  815. hapd = wpa_s->ap_iface->bss[0];
  816. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  817. if (os_snprintf_error(sizeof(pin_txt), ret))
  818. return -1;
  819. os_free(hapd->conf->ap_pin);
  820. hapd->conf->ap_pin = os_strdup(pin_txt);
  821. if (hapd->conf->ap_pin == NULL)
  822. return -1;
  823. wpas_wps_ap_pin_enable(wpa_s, timeout);
  824. return 0;
  825. }
  826. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  827. {
  828. struct hostapd_data *hapd;
  829. if (wpa_s->ap_iface == NULL)
  830. return;
  831. hapd = wpa_s->ap_iface->bss[0];
  832. /*
  833. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  834. * PIN if this happens multiple times to slow down brute force attacks.
  835. */
  836. hapd->ap_pin_failures++;
  837. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  838. hapd->ap_pin_failures);
  839. if (hapd->ap_pin_failures < 3)
  840. return;
  841. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  842. hapd->ap_pin_failures = 0;
  843. os_free(hapd->conf->ap_pin);
  844. hapd->conf->ap_pin = NULL;
  845. }
  846. #ifdef CONFIG_WPS_NFC
  847. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  848. int ndef)
  849. {
  850. struct hostapd_data *hapd;
  851. if (wpa_s->ap_iface == NULL)
  852. return NULL;
  853. hapd = wpa_s->ap_iface->bss[0];
  854. return hostapd_wps_nfc_config_token(hapd, ndef);
  855. }
  856. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  857. int ndef)
  858. {
  859. struct hostapd_data *hapd;
  860. if (wpa_s->ap_iface == NULL)
  861. return NULL;
  862. hapd = wpa_s->ap_iface->bss[0];
  863. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  864. }
  865. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  866. const struct wpabuf *req,
  867. const struct wpabuf *sel)
  868. {
  869. struct hostapd_data *hapd;
  870. if (wpa_s->ap_iface == NULL)
  871. return -1;
  872. hapd = wpa_s->ap_iface->bss[0];
  873. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  874. }
  875. #endif /* CONFIG_WPS_NFC */
  876. #endif /* CONFIG_WPS */
  877. #ifdef CONFIG_CTRL_IFACE
  878. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  879. char *buf, size_t buflen)
  880. {
  881. struct hostapd_data *hapd;
  882. if (wpa_s->ap_iface)
  883. hapd = wpa_s->ap_iface->bss[0];
  884. else if (wpa_s->ifmsh)
  885. hapd = wpa_s->ifmsh->bss[0];
  886. else
  887. return -1;
  888. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  889. }
  890. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  891. char *buf, size_t buflen)
  892. {
  893. struct hostapd_data *hapd;
  894. if (wpa_s->ap_iface)
  895. hapd = wpa_s->ap_iface->bss[0];
  896. else if (wpa_s->ifmsh)
  897. hapd = wpa_s->ifmsh->bss[0];
  898. else
  899. return -1;
  900. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  901. }
  902. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  903. char *buf, size_t buflen)
  904. {
  905. struct hostapd_data *hapd;
  906. if (wpa_s->ap_iface)
  907. hapd = wpa_s->ap_iface->bss[0];
  908. else if (wpa_s->ifmsh)
  909. hapd = wpa_s->ifmsh->bss[0];
  910. else
  911. return -1;
  912. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  913. }
  914. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  915. const char *txtaddr)
  916. {
  917. if (wpa_s->ap_iface == NULL)
  918. return -1;
  919. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  920. txtaddr);
  921. }
  922. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  923. const char *txtaddr)
  924. {
  925. if (wpa_s->ap_iface == NULL)
  926. return -1;
  927. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  928. txtaddr);
  929. }
  930. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  931. size_t buflen, int verbose)
  932. {
  933. char *pos = buf, *end = buf + buflen;
  934. int ret;
  935. struct hostapd_bss_config *conf;
  936. if (wpa_s->ap_iface == NULL)
  937. return -1;
  938. conf = wpa_s->ap_iface->bss[0]->conf;
  939. if (conf->wpa == 0)
  940. return 0;
  941. ret = os_snprintf(pos, end - pos,
  942. "pairwise_cipher=%s\n"
  943. "group_cipher=%s\n"
  944. "key_mgmt=%s\n",
  945. wpa_cipher_txt(conf->rsn_pairwise),
  946. wpa_cipher_txt(conf->wpa_group),
  947. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  948. conf->wpa));
  949. if (os_snprintf_error(end - pos, ret))
  950. return pos - buf;
  951. pos += ret;
  952. return pos - buf;
  953. }
  954. #endif /* CONFIG_CTRL_IFACE */
  955. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  956. {
  957. struct hostapd_iface *iface = wpa_s->ap_iface;
  958. struct wpa_ssid *ssid = wpa_s->current_ssid;
  959. struct hostapd_data *hapd;
  960. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  961. ssid->mode == WPAS_MODE_INFRA ||
  962. ssid->mode == WPAS_MODE_IBSS)
  963. return -1;
  964. #ifdef CONFIG_P2P
  965. if (ssid->mode == WPAS_MODE_P2P_GO)
  966. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  967. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  968. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  969. P2P_GROUP_FORMATION;
  970. #endif /* CONFIG_P2P */
  971. hapd = iface->bss[0];
  972. if (hapd->drv_priv == NULL)
  973. return -1;
  974. ieee802_11_set_beacons(iface);
  975. hostapd_set_ap_wps_ie(hapd);
  976. return 0;
  977. }
  978. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  979. struct csa_settings *settings)
  980. {
  981. #ifdef NEED_AP_MLME
  982. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  983. return -1;
  984. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  985. #else /* NEED_AP_MLME */
  986. return -1;
  987. #endif /* NEED_AP_MLME */
  988. }
  989. #ifdef CONFIG_CTRL_IFACE
  990. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  991. {
  992. struct csa_settings settings;
  993. int ret = hostapd_parse_csa_settings(pos, &settings);
  994. if (ret)
  995. return ret;
  996. return ap_switch_channel(wpa_s, &settings);
  997. }
  998. #endif /* CONFIG_CTRL_IFACE */
  999. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  1000. int offset, int width, int cf1, int cf2)
  1001. {
  1002. if (!wpa_s->ap_iface)
  1003. return;
  1004. wpa_s->assoc_freq = freq;
  1005. if (wpa_s->current_ssid)
  1006. wpa_s->current_ssid->frequency = freq;
  1007. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht,
  1008. offset, width, cf1, cf2);
  1009. }
  1010. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  1011. const u8 *addr)
  1012. {
  1013. struct hostapd_data *hapd;
  1014. struct hostapd_bss_config *conf;
  1015. if (!wpa_s->ap_iface)
  1016. return -1;
  1017. if (addr)
  1018. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  1019. MAC2STR(addr));
  1020. else
  1021. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  1022. hapd = wpa_s->ap_iface->bss[0];
  1023. conf = hapd->conf;
  1024. os_free(conf->accept_mac);
  1025. conf->accept_mac = NULL;
  1026. conf->num_accept_mac = 0;
  1027. os_free(conf->deny_mac);
  1028. conf->deny_mac = NULL;
  1029. conf->num_deny_mac = 0;
  1030. if (addr == NULL) {
  1031. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  1032. return 0;
  1033. }
  1034. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  1035. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  1036. if (conf->accept_mac == NULL)
  1037. return -1;
  1038. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  1039. conf->num_accept_mac = 1;
  1040. return 0;
  1041. }
  1042. #ifdef CONFIG_WPS_NFC
  1043. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  1044. const struct wpabuf *pw, const u8 *pubkey_hash)
  1045. {
  1046. struct hostapd_data *hapd;
  1047. struct wps_context *wps;
  1048. if (!wpa_s->ap_iface)
  1049. return -1;
  1050. hapd = wpa_s->ap_iface->bss[0];
  1051. wps = hapd->wps;
  1052. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  1053. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  1054. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1055. return -1;
  1056. }
  1057. dh5_free(wps->dh_ctx);
  1058. wpabuf_free(wps->dh_pubkey);
  1059. wpabuf_free(wps->dh_privkey);
  1060. wps->dh_privkey = wpabuf_dup(
  1061. wpa_s->parent->conf->wps_nfc_dh_privkey);
  1062. wps->dh_pubkey = wpabuf_dup(
  1063. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  1064. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1065. wps->dh_ctx = NULL;
  1066. wpabuf_free(wps->dh_pubkey);
  1067. wps->dh_pubkey = NULL;
  1068. wpabuf_free(wps->dh_privkey);
  1069. wps->dh_privkey = NULL;
  1070. return -1;
  1071. }
  1072. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1073. if (wps->dh_ctx == NULL)
  1074. return -1;
  1075. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1076. pw_id,
  1077. pw ? wpabuf_head(pw) : NULL,
  1078. pw ? wpabuf_len(pw) : 0, 1);
  1079. }
  1080. #endif /* CONFIG_WPS_NFC */
  1081. #ifdef CONFIG_CTRL_IFACE
  1082. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1083. {
  1084. struct hostapd_data *hapd;
  1085. if (!wpa_s->ap_iface)
  1086. return -1;
  1087. hapd = wpa_s->ap_iface->bss[0];
  1088. return hostapd_ctrl_iface_stop_ap(hapd);
  1089. }
  1090. #endif /* CONFIG_CTRL_IFACE */
  1091. #ifdef NEED_AP_MLME
  1092. void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s,
  1093. struct dfs_event *radar)
  1094. {
  1095. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1096. return;
  1097. wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq);
  1098. hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq,
  1099. radar->ht_enabled, radar->chan_offset,
  1100. radar->chan_width,
  1101. radar->cf1, radar->cf2);
  1102. }
  1103. void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s,
  1104. struct dfs_event *radar)
  1105. {
  1106. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1107. return;
  1108. wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq);
  1109. hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq,
  1110. radar->ht_enabled, radar->chan_offset,
  1111. radar->chan_width, radar->cf1, radar->cf2);
  1112. }
  1113. void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s,
  1114. struct dfs_event *radar)
  1115. {
  1116. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1117. return;
  1118. wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq);
  1119. hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq,
  1120. radar->ht_enabled, radar->chan_offset,
  1121. radar->chan_width, radar->cf1, radar->cf2);
  1122. }
  1123. void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s,
  1124. struct dfs_event *radar)
  1125. {
  1126. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1127. return;
  1128. wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq);
  1129. hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq,
  1130. radar->ht_enabled, radar->chan_offset,
  1131. radar->chan_width, radar->cf1, radar->cf2);
  1132. }
  1133. void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s,
  1134. struct dfs_event *radar)
  1135. {
  1136. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1137. return;
  1138. wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq);
  1139. hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq,
  1140. radar->ht_enabled, radar->chan_offset,
  1141. radar->chan_width, radar->cf1, radar->cf2);
  1142. }
  1143. #endif /* NEED_AP_MLME */
  1144. void ap_periodic(struct wpa_supplicant *wpa_s)
  1145. {
  1146. if (wpa_s->ap_iface)
  1147. hostapd_periodic_iface(wpa_s->ap_iface);
  1148. }