ap.c 25 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This program is free software; you can redistribute it and/or modify
  7. * it under the terms of the GNU General Public License version 2 as
  8. * published by the Free Software Foundation.
  9. *
  10. * Alternatively, this software may be distributed under the terms of BSD
  11. * license.
  12. *
  13. * See README and COPYING for more details.
  14. */
  15. #include "utils/includes.h"
  16. #include "utils/common.h"
  17. #include "utils/eloop.h"
  18. #include "utils/uuid.h"
  19. #include "common/ieee802_11_defs.h"
  20. #include "common/wpa_ctrl.h"
  21. #include "ap/hostapd.h"
  22. #include "ap/ap_config.h"
  23. #include "ap/ap_drv_ops.h"
  24. #ifdef NEED_AP_MLME
  25. #include "ap/ieee802_11.h"
  26. #endif /* NEED_AP_MLME */
  27. #include "ap/beacon.h"
  28. #include "ap/ieee802_1x.h"
  29. #include "ap/wps_hostapd.h"
  30. #include "ap/ctrl_iface_ap.h"
  31. #include "wps/wps.h"
  32. #include "common/ieee802_11_defs.h"
  33. #include "config_ssid.h"
  34. #include "config.h"
  35. #include "wpa_supplicant_i.h"
  36. #include "driver_i.h"
  37. #include "p2p_supplicant.h"
  38. #include "ap.h"
  39. #include "ap/sta_info.h"
  40. #include "notify.h"
  41. #ifdef CONFIG_WPS
  42. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  43. #endif /* CONFIG_WPS */
  44. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  45. struct wpa_ssid *ssid,
  46. struct hostapd_config *conf)
  47. {
  48. struct hostapd_bss_config *bss = &conf->bss[0];
  49. int pairwise;
  50. conf->driver = wpa_s->driver;
  51. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  52. if (ssid->frequency == 0) {
  53. /* default channel 11 */
  54. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  55. conf->channel = 11;
  56. } else if (ssid->frequency >= 2412 && ssid->frequency <= 2472) {
  57. conf->hw_mode = HOSTAPD_MODE_IEEE80211G;
  58. conf->channel = (ssid->frequency - 2407) / 5;
  59. } else if ((ssid->frequency >= 5180 && ssid->frequency <= 5240) ||
  60. (ssid->frequency >= 5745 && ssid->frequency <= 5825)) {
  61. conf->hw_mode = HOSTAPD_MODE_IEEE80211A;
  62. conf->channel = (ssid->frequency - 5000) / 5;
  63. } else {
  64. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  65. ssid->frequency);
  66. return -1;
  67. }
  68. /* TODO: enable HT40 if driver supports it;
  69. * drop to 11b if driver does not support 11g */
  70. #ifdef CONFIG_IEEE80211N
  71. /*
  72. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  73. * and a mask of allowed capabilities within conf->ht_capab.
  74. * Using default config settings for: conf->ht_op_mode_fixed,
  75. * conf->secondary_channel, conf->require_ht
  76. */
  77. if (wpa_s->hw.modes) {
  78. struct hostapd_hw_modes *mode = NULL;
  79. int i;
  80. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  81. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  82. mode = &wpa_s->hw.modes[i];
  83. break;
  84. }
  85. }
  86. if (mode && mode->ht_capab) {
  87. conf->ieee80211n = 1;
  88. /*
  89. * white-list capabilities that won't cause issues
  90. * to connecting stations, while leaving the current
  91. * capabilities intact (currently disabled SMPS).
  92. */
  93. conf->ht_capab |= mode->ht_capab &
  94. (HT_CAP_INFO_GREEN_FIELD |
  95. HT_CAP_INFO_SHORT_GI20MHZ |
  96. HT_CAP_INFO_SHORT_GI40MHZ |
  97. HT_CAP_INFO_RX_STBC_MASK |
  98. HT_CAP_INFO_MAX_AMSDU_SIZE);
  99. }
  100. }
  101. #endif /* CONFIG_IEEE80211N */
  102. #ifdef CONFIG_P2P
  103. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G) {
  104. /* Remove 802.11b rates from supported and basic rate sets */
  105. int *list = os_malloc(4 * sizeof(int));
  106. if (list) {
  107. list[0] = 60;
  108. list[1] = 120;
  109. list[2] = 240;
  110. list[3] = -1;
  111. }
  112. conf->basic_rates = list;
  113. list = os_malloc(9 * sizeof(int));
  114. if (list) {
  115. list[0] = 60;
  116. list[1] = 90;
  117. list[2] = 120;
  118. list[3] = 180;
  119. list[4] = 240;
  120. list[5] = 360;
  121. list[6] = 480;
  122. list[7] = 540;
  123. list[8] = -1;
  124. }
  125. conf->supported_rates = list;
  126. }
  127. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  128. #endif /* CONFIG_P2P */
  129. if (ssid->ssid_len == 0) {
  130. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  131. return -1;
  132. }
  133. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  134. bss->ssid.ssid[ssid->ssid_len] = '\0';
  135. bss->ssid.ssid_len = ssid->ssid_len;
  136. bss->ssid.ssid_set = 1;
  137. if (ssid->auth_alg)
  138. bss->auth_algs = ssid->auth_alg;
  139. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  140. bss->wpa = ssid->proto;
  141. bss->wpa_key_mgmt = ssid->key_mgmt;
  142. bss->wpa_pairwise = ssid->pairwise_cipher;
  143. if (ssid->passphrase) {
  144. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  145. } else if (ssid->psk_set) {
  146. os_free(bss->ssid.wpa_psk);
  147. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  148. if (bss->ssid.wpa_psk == NULL)
  149. return -1;
  150. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  151. bss->ssid.wpa_psk->group = 1;
  152. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  153. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  154. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  155. int i;
  156. for (i = 0; i < NUM_WEP_KEYS; i++) {
  157. if (ssid->wep_key_len[i] == 0)
  158. continue;
  159. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  160. if (wep->key[i] == NULL)
  161. return -1;
  162. os_memcpy(wep->key[i], ssid->wep_key[i],
  163. ssid->wep_key_len[i]);
  164. wep->len[i] = ssid->wep_key_len[i];
  165. }
  166. wep->idx = ssid->wep_tx_keyidx;
  167. wep->keys_set = 1;
  168. }
  169. /* Select group cipher based on the enabled pairwise cipher suites */
  170. pairwise = 0;
  171. if (bss->wpa & 1)
  172. pairwise |= bss->wpa_pairwise;
  173. if (bss->wpa & 2) {
  174. if (bss->rsn_pairwise == 0)
  175. bss->rsn_pairwise = bss->wpa_pairwise;
  176. pairwise |= bss->rsn_pairwise;
  177. }
  178. if (pairwise & WPA_CIPHER_TKIP)
  179. bss->wpa_group = WPA_CIPHER_TKIP;
  180. else
  181. bss->wpa_group = WPA_CIPHER_CCMP;
  182. if (bss->wpa && bss->ieee802_1x)
  183. bss->ssid.security_policy = SECURITY_WPA;
  184. else if (bss->wpa)
  185. bss->ssid.security_policy = SECURITY_WPA_PSK;
  186. else if (bss->ieee802_1x) {
  187. int cipher = WPA_CIPHER_NONE;
  188. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  189. bss->ssid.wep.default_len = bss->default_wep_key_len;
  190. if (bss->default_wep_key_len)
  191. cipher = bss->default_wep_key_len >= 13 ?
  192. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  193. bss->wpa_group = cipher;
  194. bss->wpa_pairwise = cipher;
  195. bss->rsn_pairwise = cipher;
  196. } else if (bss->ssid.wep.keys_set) {
  197. int cipher = WPA_CIPHER_WEP40;
  198. if (bss->ssid.wep.len[0] >= 13)
  199. cipher = WPA_CIPHER_WEP104;
  200. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  201. bss->wpa_group = cipher;
  202. bss->wpa_pairwise = cipher;
  203. bss->rsn_pairwise = cipher;
  204. } else {
  205. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  206. bss->wpa_group = WPA_CIPHER_NONE;
  207. bss->wpa_pairwise = WPA_CIPHER_NONE;
  208. bss->rsn_pairwise = WPA_CIPHER_NONE;
  209. }
  210. #ifdef CONFIG_WPS
  211. /*
  212. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  213. * require user interaction to actually use it. Only the internal
  214. * Registrar is supported.
  215. */
  216. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  217. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  218. goto no_wps;
  219. bss->eap_server = 1;
  220. bss->wps_state = 2;
  221. bss->ap_setup_locked = 2;
  222. if (wpa_s->conf->config_methods)
  223. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  224. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  225. WPS_DEV_TYPE_LEN);
  226. if (wpa_s->conf->device_name) {
  227. bss->device_name = os_strdup(wpa_s->conf->device_name);
  228. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  229. }
  230. if (wpa_s->conf->manufacturer)
  231. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  232. if (wpa_s->conf->model_name)
  233. bss->model_name = os_strdup(wpa_s->conf->model_name);
  234. if (wpa_s->conf->model_number)
  235. bss->model_number = os_strdup(wpa_s->conf->model_number);
  236. if (wpa_s->conf->serial_number)
  237. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  238. if (is_nil_uuid(wpa_s->conf->uuid))
  239. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  240. else
  241. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  242. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  243. no_wps:
  244. #endif /* CONFIG_WPS */
  245. if (wpa_s->max_stations &&
  246. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  247. bss->max_num_sta = wpa_s->max_stations;
  248. else
  249. bss->max_num_sta = wpa_s->conf->max_num_sta;
  250. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  251. return 0;
  252. }
  253. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  254. {
  255. #ifdef CONFIG_P2P
  256. struct wpa_supplicant *wpa_s = ctx;
  257. const struct ieee80211_mgmt *mgmt;
  258. size_t hdr_len;
  259. mgmt = (const struct ieee80211_mgmt *) buf;
  260. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  261. if (hdr_len > len)
  262. return;
  263. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  264. mgmt->u.action.category,
  265. &mgmt->u.action.u.vs_public_action.action,
  266. len - hdr_len, freq);
  267. #endif /* CONFIG_P2P */
  268. }
  269. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  270. union wps_event_data *data)
  271. {
  272. #ifdef CONFIG_P2P
  273. struct wpa_supplicant *wpa_s = ctx;
  274. if (event == WPS_EV_FAIL) {
  275. struct wps_event_fail *fail = &data->fail;
  276. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  277. wpa_s == wpa_s->global->p2p_group_formation) {
  278. /*
  279. * src/ap/wps_hostapd.c has already sent this on the
  280. * main interface, so only send on the parent interface
  281. * here if needed.
  282. */
  283. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  284. "msg=%d config_error=%d",
  285. fail->msg, fail->config_error);
  286. }
  287. wpas_p2p_wps_failed(wpa_s, fail);
  288. }
  289. #endif /* CONFIG_P2P */
  290. }
  291. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  292. int authorized)
  293. {
  294. wpas_notify_sta_authorized(ctx, mac_addr, authorized);
  295. }
  296. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  297. {
  298. #ifdef CONFIG_P2P
  299. struct wpa_supplicant *wpa_s = ctx;
  300. const struct ieee80211_mgmt *mgmt;
  301. size_t hdr_len;
  302. mgmt = (const struct ieee80211_mgmt *) buf;
  303. hdr_len = (const u8 *) &mgmt->u.action.u.vs_public_action.action - buf;
  304. if (hdr_len > len)
  305. return -1;
  306. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  307. mgmt->u.action.category,
  308. &mgmt->u.action.u.vs_public_action.action,
  309. len - hdr_len, freq);
  310. #endif /* CONFIG_P2P */
  311. return 0;
  312. }
  313. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  314. const u8 *bssid, const u8 *ie, size_t ie_len)
  315. {
  316. #ifdef CONFIG_P2P
  317. struct wpa_supplicant *wpa_s = ctx;
  318. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len);
  319. #else /* CONFIG_P2P */
  320. return 0;
  321. #endif /* CONFIG_P2P */
  322. }
  323. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  324. const u8 *uuid_e)
  325. {
  326. #ifdef CONFIG_P2P
  327. struct wpa_supplicant *wpa_s = ctx;
  328. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  329. #endif /* CONFIG_P2P */
  330. }
  331. static void wpas_ap_configured_cb(void *ctx)
  332. {
  333. struct wpa_supplicant *wpa_s = ctx;
  334. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  335. if (wpa_s->ap_configured_cb)
  336. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  337. wpa_s->ap_configured_cb_data);
  338. }
  339. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  340. struct wpa_ssid *ssid)
  341. {
  342. struct wpa_driver_associate_params params;
  343. struct hostapd_iface *hapd_iface;
  344. struct hostapd_config *conf;
  345. size_t i;
  346. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  347. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  348. return -1;
  349. }
  350. wpa_supplicant_ap_deinit(wpa_s);
  351. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  352. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  353. os_memset(&params, 0, sizeof(params));
  354. params.ssid = ssid->ssid;
  355. params.ssid_len = ssid->ssid_len;
  356. switch (ssid->mode) {
  357. case WPAS_MODE_INFRA:
  358. params.mode = IEEE80211_MODE_INFRA;
  359. break;
  360. case WPAS_MODE_IBSS:
  361. params.mode = IEEE80211_MODE_IBSS;
  362. break;
  363. case WPAS_MODE_AP:
  364. case WPAS_MODE_P2P_GO:
  365. case WPAS_MODE_P2P_GROUP_FORMATION:
  366. params.mode = IEEE80211_MODE_AP;
  367. break;
  368. }
  369. params.freq = ssid->frequency;
  370. params.wpa_proto = ssid->proto;
  371. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  372. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  373. else
  374. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  375. params.key_mgmt_suite = key_mgmt2driver(wpa_s->key_mgmt);
  376. if (ssid->pairwise_cipher & WPA_CIPHER_CCMP)
  377. wpa_s->pairwise_cipher = WPA_CIPHER_CCMP;
  378. else if (ssid->pairwise_cipher & WPA_CIPHER_TKIP)
  379. wpa_s->pairwise_cipher = WPA_CIPHER_TKIP;
  380. else if (ssid->pairwise_cipher & WPA_CIPHER_NONE)
  381. wpa_s->pairwise_cipher = WPA_CIPHER_NONE;
  382. else {
  383. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  384. "cipher.");
  385. return -1;
  386. }
  387. params.pairwise_suite = cipher_suite2driver(wpa_s->pairwise_cipher);
  388. params.group_suite = params.pairwise_suite;
  389. #ifdef CONFIG_P2P
  390. if (ssid->mode == WPAS_MODE_P2P_GO ||
  391. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  392. params.p2p = 1;
  393. #endif /* CONFIG_P2P */
  394. if (wpa_s->parent->set_ap_uapsd)
  395. params.uapsd = wpa_s->parent->ap_uapsd;
  396. else
  397. params.uapsd = -1;
  398. if (wpa_drv_associate(wpa_s, &params) < 0) {
  399. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  400. return -1;
  401. }
  402. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  403. if (hapd_iface == NULL)
  404. return -1;
  405. hapd_iface->owner = wpa_s;
  406. hapd_iface->drv_flags = wpa_s->drv_flags;
  407. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  408. if (conf == NULL) {
  409. wpa_supplicant_ap_deinit(wpa_s);
  410. return -1;
  411. }
  412. if (params.uapsd > 0) {
  413. conf->bss->wmm_enabled = 1;
  414. conf->bss->wmm_uapsd = 1;
  415. }
  416. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  417. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  418. wpa_supplicant_ap_deinit(wpa_s);
  419. return -1;
  420. }
  421. #ifdef CONFIG_P2P
  422. if (ssid->mode == WPAS_MODE_P2P_GO)
  423. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  424. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  425. conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  426. P2P_GROUP_FORMATION;
  427. #endif /* CONFIG_P2P */
  428. hapd_iface->num_bss = conf->num_bss;
  429. hapd_iface->bss = os_zalloc(conf->num_bss *
  430. sizeof(struct hostapd_data *));
  431. if (hapd_iface->bss == NULL) {
  432. wpa_supplicant_ap_deinit(wpa_s);
  433. return -1;
  434. }
  435. for (i = 0; i < conf->num_bss; i++) {
  436. hapd_iface->bss[i] =
  437. hostapd_alloc_bss_data(hapd_iface, conf,
  438. &conf->bss[i]);
  439. if (hapd_iface->bss[i] == NULL) {
  440. wpa_supplicant_ap_deinit(wpa_s);
  441. return -1;
  442. }
  443. hapd_iface->bss[i]->msg_ctx = wpa_s;
  444. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  445. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  446. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  447. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  448. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  449. hostapd_register_probereq_cb(hapd_iface->bss[i],
  450. ap_probe_req_rx, wpa_s);
  451. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  452. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  453. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  454. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  455. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  456. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  457. #ifdef CONFIG_P2P
  458. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  459. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(
  460. wpa_s, ssid->p2p_persistent_group,
  461. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION);
  462. #endif /* CONFIG_P2P */
  463. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  464. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  465. }
  466. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  467. hapd_iface->bss[0]->driver = wpa_s->driver;
  468. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  469. wpa_s->current_ssid = ssid;
  470. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  471. wpa_s->assoc_freq = ssid->frequency;
  472. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  473. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  474. wpa_supplicant_ap_deinit(wpa_s);
  475. return -1;
  476. }
  477. return 0;
  478. }
  479. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  480. {
  481. #ifdef CONFIG_WPS
  482. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  483. #endif /* CONFIG_WPS */
  484. if (wpa_s->ap_iface == NULL)
  485. return;
  486. wpa_s->current_ssid = NULL;
  487. wpa_s->assoc_freq = 0;
  488. wpa_s->reassociated_connection = 0;
  489. #ifdef CONFIG_P2P
  490. if (wpa_s->ap_iface->bss)
  491. wpa_s->ap_iface->bss[0]->p2p_group = NULL;
  492. wpas_p2p_group_deinit(wpa_s);
  493. #endif /* CONFIG_P2P */
  494. hostapd_interface_deinit(wpa_s->ap_iface);
  495. hostapd_interface_free(wpa_s->ap_iface);
  496. wpa_s->ap_iface = NULL;
  497. wpa_drv_deinit_ap(wpa_s);
  498. }
  499. void ap_tx_status(void *ctx, const u8 *addr,
  500. const u8 *buf, size_t len, int ack)
  501. {
  502. #ifdef NEED_AP_MLME
  503. struct wpa_supplicant *wpa_s = ctx;
  504. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  505. #endif /* NEED_AP_MLME */
  506. }
  507. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  508. const u8 *data, size_t len, int ack)
  509. {
  510. #ifdef NEED_AP_MLME
  511. struct wpa_supplicant *wpa_s = ctx;
  512. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  513. #endif /* NEED_AP_MLME */
  514. }
  515. void ap_client_poll_ok(void *ctx, const u8 *addr)
  516. {
  517. #ifdef NEED_AP_MLME
  518. struct wpa_supplicant *wpa_s = ctx;
  519. if (wpa_s->ap_iface)
  520. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  521. #endif /* NEED_AP_MLME */
  522. }
  523. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  524. {
  525. #ifdef NEED_AP_MLME
  526. struct wpa_supplicant *wpa_s = ctx;
  527. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  528. #endif /* NEED_AP_MLME */
  529. }
  530. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  531. {
  532. #ifdef NEED_AP_MLME
  533. struct wpa_supplicant *wpa_s = ctx;
  534. struct hostapd_frame_info fi;
  535. os_memset(&fi, 0, sizeof(fi));
  536. fi.datarate = rx_mgmt->datarate;
  537. fi.ssi_signal = rx_mgmt->ssi_signal;
  538. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  539. rx_mgmt->frame_len, &fi);
  540. #endif /* NEED_AP_MLME */
  541. }
  542. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  543. {
  544. #ifdef NEED_AP_MLME
  545. struct wpa_supplicant *wpa_s = ctx;
  546. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  547. #endif /* NEED_AP_MLME */
  548. }
  549. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  550. const u8 *src_addr, const u8 *buf, size_t len)
  551. {
  552. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  553. }
  554. #ifdef CONFIG_WPS
  555. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  556. const u8 *p2p_dev_addr)
  557. {
  558. if (!wpa_s->ap_iface)
  559. return -1;
  560. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  561. p2p_dev_addr);
  562. }
  563. static int wpa_supplicant_ap_wps_sta_cancel(struct hostapd_data *hapd,
  564. struct sta_info *sta, void *ctx)
  565. {
  566. if (sta && (sta->flags & WLAN_STA_WPS)) {
  567. ap_sta_deauthenticate(hapd, sta,
  568. WLAN_REASON_PREV_AUTH_NOT_VALID);
  569. wpa_printf(MSG_DEBUG, "WPS: %s: Deauth sta=" MACSTR,
  570. __func__, MAC2STR(sta->addr));
  571. return 1;
  572. }
  573. return 0;
  574. }
  575. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  576. {
  577. struct wps_registrar *reg;
  578. int reg_sel = 0, wps_sta = 0;
  579. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  580. return -1;
  581. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  582. reg_sel = wps_registrar_wps_cancel(reg);
  583. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  584. wpa_supplicant_ap_wps_sta_cancel, NULL);
  585. if (!reg_sel && !wps_sta) {
  586. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  587. "time");
  588. return -1;
  589. }
  590. /*
  591. * There are 2 cases to return wps cancel as success:
  592. * 1. When wps cancel was initiated but no connection has been
  593. * established with client yet.
  594. * 2. Client is in the middle of exchanging WPS messages.
  595. */
  596. return 0;
  597. }
  598. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  599. const char *pin, char *buf, size_t buflen)
  600. {
  601. int ret, ret_len = 0;
  602. if (!wpa_s->ap_iface)
  603. return -1;
  604. if (pin == NULL) {
  605. unsigned int rpin = wps_generate_pin();
  606. ret_len = os_snprintf(buf, buflen, "%d", rpin);
  607. pin = buf;
  608. } else
  609. ret_len = os_snprintf(buf, buflen, "%s", pin);
  610. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  611. 0);
  612. if (ret)
  613. return -1;
  614. return ret_len;
  615. }
  616. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  617. {
  618. struct wpa_supplicant *wpa_s = eloop_data;
  619. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  620. wpas_wps_ap_pin_disable(wpa_s);
  621. }
  622. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  623. {
  624. struct hostapd_data *hapd;
  625. if (wpa_s->ap_iface == NULL)
  626. return;
  627. hapd = wpa_s->ap_iface->bss[0];
  628. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  629. hapd->ap_pin_failures = 0;
  630. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  631. if (timeout > 0)
  632. eloop_register_timeout(timeout, 0,
  633. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  634. }
  635. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  636. {
  637. struct hostapd_data *hapd;
  638. if (wpa_s->ap_iface == NULL)
  639. return;
  640. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  641. hapd = wpa_s->ap_iface->bss[0];
  642. os_free(hapd->conf->ap_pin);
  643. hapd->conf->ap_pin = NULL;
  644. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  645. }
  646. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  647. {
  648. struct hostapd_data *hapd;
  649. unsigned int pin;
  650. char pin_txt[9];
  651. if (wpa_s->ap_iface == NULL)
  652. return NULL;
  653. hapd = wpa_s->ap_iface->bss[0];
  654. pin = wps_generate_pin();
  655. os_snprintf(pin_txt, sizeof(pin_txt), "%u", pin);
  656. os_free(hapd->conf->ap_pin);
  657. hapd->conf->ap_pin = os_strdup(pin_txt);
  658. if (hapd->conf->ap_pin == NULL)
  659. return NULL;
  660. wpas_wps_ap_pin_enable(wpa_s, timeout);
  661. return hapd->conf->ap_pin;
  662. }
  663. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  664. {
  665. struct hostapd_data *hapd;
  666. if (wpa_s->ap_iface == NULL)
  667. return NULL;
  668. hapd = wpa_s->ap_iface->bss[0];
  669. return hapd->conf->ap_pin;
  670. }
  671. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  672. int timeout)
  673. {
  674. struct hostapd_data *hapd;
  675. char pin_txt[9];
  676. int ret;
  677. if (wpa_s->ap_iface == NULL)
  678. return -1;
  679. hapd = wpa_s->ap_iface->bss[0];
  680. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  681. if (ret < 0 || ret >= (int) sizeof(pin_txt))
  682. return -1;
  683. os_free(hapd->conf->ap_pin);
  684. hapd->conf->ap_pin = os_strdup(pin_txt);
  685. if (hapd->conf->ap_pin == NULL)
  686. return -1;
  687. wpas_wps_ap_pin_enable(wpa_s, timeout);
  688. return 0;
  689. }
  690. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  691. {
  692. struct hostapd_data *hapd;
  693. if (wpa_s->ap_iface == NULL)
  694. return;
  695. hapd = wpa_s->ap_iface->bss[0];
  696. /*
  697. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  698. * PIN if this happens multiple times to slow down brute force attacks.
  699. */
  700. hapd->ap_pin_failures++;
  701. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  702. hapd->ap_pin_failures);
  703. if (hapd->ap_pin_failures < 3)
  704. return;
  705. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  706. hapd->ap_pin_failures = 0;
  707. os_free(hapd->conf->ap_pin);
  708. hapd->conf->ap_pin = NULL;
  709. }
  710. #endif /* CONFIG_WPS */
  711. #ifdef CONFIG_CTRL_IFACE
  712. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  713. char *buf, size_t buflen)
  714. {
  715. if (wpa_s->ap_iface == NULL)
  716. return -1;
  717. return hostapd_ctrl_iface_sta_first(wpa_s->ap_iface->bss[0],
  718. buf, buflen);
  719. }
  720. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  721. char *buf, size_t buflen)
  722. {
  723. if (wpa_s->ap_iface == NULL)
  724. return -1;
  725. return hostapd_ctrl_iface_sta(wpa_s->ap_iface->bss[0], txtaddr,
  726. buf, buflen);
  727. }
  728. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  729. char *buf, size_t buflen)
  730. {
  731. if (wpa_s->ap_iface == NULL)
  732. return -1;
  733. return hostapd_ctrl_iface_sta_next(wpa_s->ap_iface->bss[0], txtaddr,
  734. buf, buflen);
  735. }
  736. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  737. size_t buflen, int verbose)
  738. {
  739. char *pos = buf, *end = buf + buflen;
  740. int ret;
  741. struct hostapd_bss_config *conf;
  742. if (wpa_s->ap_iface == NULL)
  743. return -1;
  744. conf = wpa_s->ap_iface->bss[0]->conf;
  745. if (conf->wpa == 0)
  746. return 0;
  747. ret = os_snprintf(pos, end - pos,
  748. "pairwise_cipher=%s\n"
  749. "group_cipher=%s\n"
  750. "key_mgmt=%s\n",
  751. wpa_cipher_txt(conf->rsn_pairwise),
  752. wpa_cipher_txt(conf->wpa_group),
  753. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  754. conf->wpa));
  755. if (ret < 0 || ret >= end - pos)
  756. return pos - buf;
  757. pos += ret;
  758. return pos - buf;
  759. }
  760. #endif /* CONFIG_CTRL_IFACE */
  761. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  762. {
  763. struct hostapd_iface *iface = wpa_s->ap_iface;
  764. struct wpa_ssid *ssid = wpa_s->current_ssid;
  765. struct hostapd_data *hapd;
  766. if (ssid == NULL || wpa_s->ap_iface == NULL)
  767. return -1;
  768. #ifdef CONFIG_P2P
  769. if (ssid->mode == WPAS_MODE_P2P_GO)
  770. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  771. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  772. iface->conf->bss[0].p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  773. P2P_GROUP_FORMATION;
  774. #endif /* CONFIG_P2P */
  775. ieee802_11_set_beacons(iface);
  776. hapd = iface->bss[0];
  777. hostapd_set_ap_wps_ie(hapd);
  778. return 0;
  779. }
  780. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  781. const u8 *addr)
  782. {
  783. struct hostapd_data *hapd;
  784. struct hostapd_bss_config *conf;
  785. if (!wpa_s->ap_iface)
  786. return -1;
  787. if (addr)
  788. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  789. MAC2STR(addr));
  790. else
  791. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  792. hapd = wpa_s->ap_iface->bss[0];
  793. conf = hapd->conf;
  794. os_free(conf->accept_mac);
  795. conf->accept_mac = NULL;
  796. conf->num_accept_mac = 0;
  797. os_free(conf->deny_mac);
  798. conf->deny_mac = NULL;
  799. conf->num_deny_mac = 0;
  800. if (addr == NULL) {
  801. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  802. return 0;
  803. }
  804. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  805. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  806. if (conf->accept_mac == NULL)
  807. return -1;
  808. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  809. conf->num_accept_mac = 1;
  810. return 0;
  811. }