ap.c 39 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "ap/dfs.h"
  28. #include "wps/wps.h"
  29. #include "common/ieee802_11_defs.h"
  30. #include "config_ssid.h"
  31. #include "config.h"
  32. #include "wpa_supplicant_i.h"
  33. #include "driver_i.h"
  34. #include "p2p_supplicant.h"
  35. #include "ap.h"
  36. #include "ap/sta_info.h"
  37. #include "notify.h"
  38. #ifdef CONFIG_WPS
  39. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  40. #endif /* CONFIG_WPS */
  41. #ifdef CONFIG_IEEE80211N
  42. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  43. struct hostapd_config *conf,
  44. struct hostapd_hw_modes *mode)
  45. {
  46. #ifdef CONFIG_P2P
  47. u8 center_chan = 0;
  48. u8 channel = conf->channel;
  49. if (!conf->secondary_channel)
  50. goto no_vht;
  51. switch (conf->vht_oper_chwidth) {
  52. case VHT_CHANWIDTH_80MHZ:
  53. case VHT_CHANWIDTH_80P80MHZ:
  54. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  55. break;
  56. case VHT_CHANWIDTH_160MHZ:
  57. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  58. break;
  59. default:
  60. /*
  61. * conf->vht_oper_chwidth might not be set for non-P2P GO cases,
  62. * try oper_cwidth 160 MHz first then VHT 80 MHz, if 160 MHz is
  63. * not supported.
  64. */
  65. conf->vht_oper_chwidth = VHT_CHANWIDTH_160MHZ;
  66. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  67. if (!center_chan) {
  68. conf->vht_oper_chwidth = VHT_CHANWIDTH_80MHZ;
  69. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode,
  70. channel);
  71. }
  72. break;
  73. }
  74. if (!center_chan)
  75. goto no_vht;
  76. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  77. return;
  78. no_vht:
  79. conf->vht_oper_centr_freq_seg0_idx =
  80. channel + conf->secondary_channel * 2;
  81. #else /* CONFIG_P2P */
  82. conf->vht_oper_centr_freq_seg0_idx =
  83. conf->channel + conf->secondary_channel * 2;
  84. #endif /* CONFIG_P2P */
  85. conf->vht_oper_chwidth = VHT_CHANWIDTH_USE_HT;
  86. }
  87. #endif /* CONFIG_IEEE80211N */
  88. int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  89. struct wpa_ssid *ssid,
  90. struct hostapd_config *conf)
  91. {
  92. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  93. &conf->channel);
  94. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  95. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  96. ssid->frequency);
  97. return -1;
  98. }
  99. /* TODO: enable HT40 if driver supports it;
  100. * drop to 11b if driver does not support 11g */
  101. #ifdef CONFIG_IEEE80211N
  102. /*
  103. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  104. * and a mask of allowed capabilities within conf->ht_capab.
  105. * Using default config settings for: conf->ht_op_mode_fixed,
  106. * conf->secondary_channel, conf->require_ht
  107. */
  108. if (wpa_s->hw.modes) {
  109. struct hostapd_hw_modes *mode = NULL;
  110. int i, no_ht = 0;
  111. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  112. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  113. mode = &wpa_s->hw.modes[i];
  114. break;
  115. }
  116. }
  117. #ifdef CONFIG_HT_OVERRIDES
  118. if (ssid->disable_ht) {
  119. conf->ieee80211n = 0;
  120. conf->ht_capab = 0;
  121. no_ht = 1;
  122. }
  123. #endif /* CONFIG_HT_OVERRIDES */
  124. if (!no_ht && mode && mode->ht_capab) {
  125. conf->ieee80211n = 1;
  126. #ifdef CONFIG_P2P
  127. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  128. (mode->ht_capab &
  129. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  130. ssid->ht40)
  131. conf->secondary_channel =
  132. wpas_p2p_get_ht40_mode(wpa_s, mode,
  133. conf->channel);
  134. if (conf->secondary_channel)
  135. conf->ht_capab |=
  136. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  137. #endif /* CONFIG_P2P */
  138. /*
  139. * white-list capabilities that won't cause issues
  140. * to connecting stations, while leaving the current
  141. * capabilities intact (currently disabled SMPS).
  142. */
  143. conf->ht_capab |= mode->ht_capab &
  144. (HT_CAP_INFO_GREEN_FIELD |
  145. HT_CAP_INFO_SHORT_GI20MHZ |
  146. HT_CAP_INFO_SHORT_GI40MHZ |
  147. HT_CAP_INFO_RX_STBC_MASK |
  148. HT_CAP_INFO_TX_STBC |
  149. HT_CAP_INFO_MAX_AMSDU_SIZE);
  150. if (mode->vht_capab && ssid->vht) {
  151. conf->ieee80211ac = 1;
  152. wpas_conf_ap_vht(wpa_s, conf, mode);
  153. }
  154. }
  155. }
  156. if (conf->secondary_channel) {
  157. struct wpa_supplicant *iface;
  158. for (iface = wpa_s->global->ifaces; iface; iface = iface->next)
  159. {
  160. if (iface == wpa_s ||
  161. iface->wpa_state < WPA_AUTHENTICATING ||
  162. (int) iface->assoc_freq != ssid->frequency)
  163. continue;
  164. /*
  165. * Do not allow 40 MHz co-ex PRI/SEC switch to force us
  166. * to change our PRI channel since we have an existing,
  167. * concurrent connection on that channel and doing
  168. * multi-channel concurrency is likely to cause more
  169. * harm than using different PRI/SEC selection in
  170. * environment with multiple BSSes on these two channels
  171. * with mixed 20 MHz or PRI channel selection.
  172. */
  173. conf->no_pri_sec_switch = 1;
  174. }
  175. }
  176. #endif /* CONFIG_IEEE80211N */
  177. return 0;
  178. }
  179. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  180. struct wpa_ssid *ssid,
  181. struct hostapd_config *conf)
  182. {
  183. struct hostapd_bss_config *bss = conf->bss[0];
  184. conf->driver = wpa_s->driver;
  185. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  186. if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf))
  187. return -1;
  188. if (ssid->pbss > 1) {
  189. wpa_printf(MSG_ERROR, "Invalid pbss value(%d) for AP mode",
  190. ssid->pbss);
  191. return -1;
  192. }
  193. bss->pbss = ssid->pbss;
  194. #ifdef CONFIG_ACS
  195. if (ssid->acs) {
  196. /* Setting channel to 0 in order to enable ACS */
  197. conf->channel = 0;
  198. wpa_printf(MSG_DEBUG, "Use automatic channel selection");
  199. }
  200. #endif /* CONFIG_ACS */
  201. if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) {
  202. conf->ieee80211h = 1;
  203. conf->ieee80211d = 1;
  204. conf->country[0] = wpa_s->conf->country[0];
  205. conf->country[1] = wpa_s->conf->country[1];
  206. }
  207. #ifdef CONFIG_P2P
  208. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  209. (ssid->mode == WPAS_MODE_P2P_GO ||
  210. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  211. /* Remove 802.11b rates from supported and basic rate sets */
  212. int *list = os_malloc(4 * sizeof(int));
  213. if (list) {
  214. list[0] = 60;
  215. list[1] = 120;
  216. list[2] = 240;
  217. list[3] = -1;
  218. }
  219. conf->basic_rates = list;
  220. list = os_malloc(9 * sizeof(int));
  221. if (list) {
  222. list[0] = 60;
  223. list[1] = 90;
  224. list[2] = 120;
  225. list[3] = 180;
  226. list[4] = 240;
  227. list[5] = 360;
  228. list[6] = 480;
  229. list[7] = 540;
  230. list[8] = -1;
  231. }
  232. conf->supported_rates = list;
  233. }
  234. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  235. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  236. if (ssid->p2p_group) {
  237. os_memcpy(bss->ip_addr_go, wpa_s->p2pdev->conf->ip_addr_go, 4);
  238. os_memcpy(bss->ip_addr_mask, wpa_s->p2pdev->conf->ip_addr_mask,
  239. 4);
  240. os_memcpy(bss->ip_addr_start,
  241. wpa_s->p2pdev->conf->ip_addr_start, 4);
  242. os_memcpy(bss->ip_addr_end, wpa_s->p2pdev->conf->ip_addr_end,
  243. 4);
  244. }
  245. #endif /* CONFIG_P2P */
  246. if (ssid->ssid_len == 0) {
  247. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  248. return -1;
  249. }
  250. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  251. bss->ssid.ssid_len = ssid->ssid_len;
  252. bss->ssid.ssid_set = 1;
  253. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  254. if (ssid->auth_alg)
  255. bss->auth_algs = ssid->auth_alg;
  256. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  257. bss->wpa = ssid->proto;
  258. if (ssid->key_mgmt == DEFAULT_KEY_MGMT)
  259. bss->wpa_key_mgmt = WPA_KEY_MGMT_PSK;
  260. else
  261. bss->wpa_key_mgmt = ssid->key_mgmt;
  262. bss->wpa_pairwise = ssid->pairwise_cipher;
  263. if (ssid->psk_set) {
  264. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  265. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  266. if (bss->ssid.wpa_psk == NULL)
  267. return -1;
  268. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  269. bss->ssid.wpa_psk->group = 1;
  270. bss->ssid.wpa_psk_set = 1;
  271. } else if (ssid->passphrase) {
  272. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  273. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  274. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  275. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  276. int i;
  277. for (i = 0; i < NUM_WEP_KEYS; i++) {
  278. if (ssid->wep_key_len[i] == 0)
  279. continue;
  280. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  281. if (wep->key[i] == NULL)
  282. return -1;
  283. os_memcpy(wep->key[i], ssid->wep_key[i],
  284. ssid->wep_key_len[i]);
  285. wep->len[i] = ssid->wep_key_len[i];
  286. }
  287. wep->idx = ssid->wep_tx_keyidx;
  288. wep->keys_set = 1;
  289. }
  290. if (ssid->ap_max_inactivity)
  291. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  292. if (ssid->dtim_period)
  293. bss->dtim_period = ssid->dtim_period;
  294. else if (wpa_s->conf->dtim_period)
  295. bss->dtim_period = wpa_s->conf->dtim_period;
  296. if (ssid->beacon_int)
  297. conf->beacon_int = ssid->beacon_int;
  298. else if (wpa_s->conf->beacon_int)
  299. conf->beacon_int = wpa_s->conf->beacon_int;
  300. #ifdef CONFIG_P2P
  301. if (ssid->mode == WPAS_MODE_P2P_GO ||
  302. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) {
  303. if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) {
  304. wpa_printf(MSG_INFO,
  305. "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it",
  306. wpa_s->conf->p2p_go_ctwindow,
  307. conf->beacon_int);
  308. conf->p2p_go_ctwindow = 0;
  309. } else {
  310. conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow;
  311. }
  312. }
  313. #endif /* CONFIG_P2P */
  314. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  315. bss->rsn_pairwise = bss->wpa_pairwise;
  316. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  317. bss->rsn_pairwise);
  318. if (bss->wpa && bss->ieee802_1x)
  319. bss->ssid.security_policy = SECURITY_WPA;
  320. else if (bss->wpa)
  321. bss->ssid.security_policy = SECURITY_WPA_PSK;
  322. else if (bss->ieee802_1x) {
  323. int cipher = WPA_CIPHER_NONE;
  324. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  325. bss->ssid.wep.default_len = bss->default_wep_key_len;
  326. if (bss->default_wep_key_len)
  327. cipher = bss->default_wep_key_len >= 13 ?
  328. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  329. bss->wpa_group = cipher;
  330. bss->wpa_pairwise = cipher;
  331. bss->rsn_pairwise = cipher;
  332. } else if (bss->ssid.wep.keys_set) {
  333. int cipher = WPA_CIPHER_WEP40;
  334. if (bss->ssid.wep.len[0] >= 13)
  335. cipher = WPA_CIPHER_WEP104;
  336. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  337. bss->wpa_group = cipher;
  338. bss->wpa_pairwise = cipher;
  339. bss->rsn_pairwise = cipher;
  340. } else {
  341. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  342. bss->wpa_group = WPA_CIPHER_NONE;
  343. bss->wpa_pairwise = WPA_CIPHER_NONE;
  344. bss->rsn_pairwise = WPA_CIPHER_NONE;
  345. }
  346. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  347. (bss->wpa_group == WPA_CIPHER_CCMP ||
  348. bss->wpa_group == WPA_CIPHER_GCMP ||
  349. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  350. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  351. /*
  352. * Strong ciphers do not need frequent rekeying, so increase
  353. * the default GTK rekeying period to 24 hours.
  354. */
  355. bss->wpa_group_rekey = 86400;
  356. }
  357. #ifdef CONFIG_IEEE80211W
  358. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  359. bss->ieee80211w = ssid->ieee80211w;
  360. #endif /* CONFIG_IEEE80211W */
  361. #ifdef CONFIG_WPS
  362. /*
  363. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  364. * require user interaction to actually use it. Only the internal
  365. * Registrar is supported.
  366. */
  367. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  368. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  369. goto no_wps;
  370. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  371. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  372. !(bss->wpa & 2)))
  373. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  374. * configuration */
  375. if (ssid->wps_disabled)
  376. goto no_wps;
  377. bss->eap_server = 1;
  378. if (!ssid->ignore_broadcast_ssid)
  379. bss->wps_state = 2;
  380. bss->ap_setup_locked = 2;
  381. if (wpa_s->conf->config_methods)
  382. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  383. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  384. WPS_DEV_TYPE_LEN);
  385. if (wpa_s->conf->device_name) {
  386. bss->device_name = os_strdup(wpa_s->conf->device_name);
  387. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  388. }
  389. if (wpa_s->conf->manufacturer)
  390. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  391. if (wpa_s->conf->model_name)
  392. bss->model_name = os_strdup(wpa_s->conf->model_name);
  393. if (wpa_s->conf->model_number)
  394. bss->model_number = os_strdup(wpa_s->conf->model_number);
  395. if (wpa_s->conf->serial_number)
  396. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  397. if (is_nil_uuid(wpa_s->conf->uuid))
  398. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  399. else
  400. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  401. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  402. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  403. no_wps:
  404. #endif /* CONFIG_WPS */
  405. if (wpa_s->max_stations &&
  406. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  407. bss->max_num_sta = wpa_s->max_stations;
  408. else
  409. bss->max_num_sta = wpa_s->conf->max_num_sta;
  410. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  411. if (wpa_s->conf->ap_vendor_elements) {
  412. bss->vendor_elements =
  413. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  414. }
  415. return 0;
  416. }
  417. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  418. {
  419. #ifdef CONFIG_P2P
  420. struct wpa_supplicant *wpa_s = ctx;
  421. const struct ieee80211_mgmt *mgmt;
  422. mgmt = (const struct ieee80211_mgmt *) buf;
  423. if (len < IEEE80211_HDRLEN + 1)
  424. return;
  425. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  426. return;
  427. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  428. mgmt->u.action.category,
  429. buf + IEEE80211_HDRLEN + 1,
  430. len - IEEE80211_HDRLEN - 1, freq);
  431. #endif /* CONFIG_P2P */
  432. }
  433. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  434. union wps_event_data *data)
  435. {
  436. #ifdef CONFIG_P2P
  437. struct wpa_supplicant *wpa_s = ctx;
  438. if (event == WPS_EV_FAIL) {
  439. struct wps_event_fail *fail = &data->fail;
  440. if (wpa_s->p2pdev && wpa_s->p2pdev != wpa_s &&
  441. wpa_s == wpa_s->global->p2p_group_formation) {
  442. /*
  443. * src/ap/wps_hostapd.c has already sent this on the
  444. * main interface, so only send on the parent interface
  445. * here if needed.
  446. */
  447. wpa_msg(wpa_s->p2pdev, MSG_INFO, WPS_EVENT_FAIL
  448. "msg=%d config_error=%d",
  449. fail->msg, fail->config_error);
  450. }
  451. wpas_p2p_wps_failed(wpa_s, fail);
  452. }
  453. #endif /* CONFIG_P2P */
  454. }
  455. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  456. int authorized, const u8 *p2p_dev_addr)
  457. {
  458. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  459. }
  460. #ifdef CONFIG_P2P
  461. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  462. const u8 *psk, size_t psk_len)
  463. {
  464. struct wpa_supplicant *wpa_s = ctx;
  465. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  466. return;
  467. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  468. }
  469. #endif /* CONFIG_P2P */
  470. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  471. {
  472. #ifdef CONFIG_P2P
  473. struct wpa_supplicant *wpa_s = ctx;
  474. const struct ieee80211_mgmt *mgmt;
  475. mgmt = (const struct ieee80211_mgmt *) buf;
  476. if (len < IEEE80211_HDRLEN + 1)
  477. return -1;
  478. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  479. mgmt->u.action.category,
  480. buf + IEEE80211_HDRLEN + 1,
  481. len - IEEE80211_HDRLEN - 1, freq);
  482. #endif /* CONFIG_P2P */
  483. return 0;
  484. }
  485. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  486. const u8 *bssid, const u8 *ie, size_t ie_len,
  487. int ssi_signal)
  488. {
  489. struct wpa_supplicant *wpa_s = ctx;
  490. unsigned int freq = 0;
  491. if (wpa_s->ap_iface)
  492. freq = wpa_s->ap_iface->freq;
  493. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  494. freq, ssi_signal);
  495. }
  496. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  497. const u8 *uuid_e)
  498. {
  499. struct wpa_supplicant *wpa_s = ctx;
  500. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  501. }
  502. static void wpas_ap_configured_cb(void *ctx)
  503. {
  504. struct wpa_supplicant *wpa_s = ctx;
  505. #ifdef CONFIG_ACS
  506. if (wpa_s->current_ssid && wpa_s->current_ssid->acs)
  507. wpa_s->assoc_freq = wpa_s->ap_iface->freq;
  508. #endif /* CONFIG_ACS */
  509. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  510. if (wpa_s->ap_configured_cb)
  511. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  512. wpa_s->ap_configured_cb_data);
  513. }
  514. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  515. struct wpa_ssid *ssid)
  516. {
  517. struct wpa_driver_associate_params params;
  518. struct hostapd_iface *hapd_iface;
  519. struct hostapd_config *conf;
  520. size_t i;
  521. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  522. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  523. return -1;
  524. }
  525. wpa_supplicant_ap_deinit(wpa_s);
  526. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  527. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  528. os_memset(&params, 0, sizeof(params));
  529. params.ssid = ssid->ssid;
  530. params.ssid_len = ssid->ssid_len;
  531. switch (ssid->mode) {
  532. case WPAS_MODE_AP:
  533. case WPAS_MODE_P2P_GO:
  534. case WPAS_MODE_P2P_GROUP_FORMATION:
  535. params.mode = IEEE80211_MODE_AP;
  536. break;
  537. default:
  538. return -1;
  539. }
  540. if (ssid->frequency == 0)
  541. ssid->frequency = 2462; /* default channel 11 */
  542. params.freq.freq = ssid->frequency;
  543. params.wpa_proto = ssid->proto;
  544. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  545. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  546. else
  547. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  548. params.key_mgmt_suite = wpa_s->key_mgmt;
  549. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  550. 1);
  551. if (wpa_s->pairwise_cipher < 0) {
  552. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  553. "cipher.");
  554. return -1;
  555. }
  556. params.pairwise_suite = wpa_s->pairwise_cipher;
  557. params.group_suite = params.pairwise_suite;
  558. #ifdef CONFIG_P2P
  559. if (ssid->mode == WPAS_MODE_P2P_GO ||
  560. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  561. params.p2p = 1;
  562. #endif /* CONFIG_P2P */
  563. if (wpa_s->p2pdev->set_ap_uapsd)
  564. params.uapsd = wpa_s->p2pdev->ap_uapsd;
  565. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  566. params.uapsd = 1; /* mandatory for P2P GO */
  567. else
  568. params.uapsd = -1;
  569. if (ieee80211_is_dfs(params.freq.freq))
  570. params.freq.freq = 0; /* set channel after CAC */
  571. if (wpa_drv_associate(wpa_s, &params) < 0) {
  572. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  573. return -1;
  574. }
  575. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  576. if (hapd_iface == NULL)
  577. return -1;
  578. hapd_iface->owner = wpa_s;
  579. hapd_iface->drv_flags = wpa_s->drv_flags;
  580. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  581. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  582. hapd_iface->extended_capa = wpa_s->extended_capa;
  583. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  584. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  585. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  586. if (conf == NULL) {
  587. wpa_supplicant_ap_deinit(wpa_s);
  588. return -1;
  589. }
  590. /* Use the maximum oper channel width if it's given. */
  591. if (ssid->max_oper_chwidth)
  592. conf->vht_oper_chwidth = ssid->max_oper_chwidth;
  593. ieee80211_freq_to_chan(ssid->vht_center_freq2,
  594. &conf->vht_oper_centr_freq_seg1_idx);
  595. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  596. wpa_s->conf->wmm_ac_params,
  597. sizeof(wpa_s->conf->wmm_ac_params));
  598. if (params.uapsd > 0) {
  599. conf->bss[0]->wmm_enabled = 1;
  600. conf->bss[0]->wmm_uapsd = 1;
  601. }
  602. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  603. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  604. wpa_supplicant_ap_deinit(wpa_s);
  605. return -1;
  606. }
  607. #ifdef CONFIG_P2P
  608. if (ssid->mode == WPAS_MODE_P2P_GO)
  609. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  610. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  611. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  612. P2P_GROUP_FORMATION;
  613. #endif /* CONFIG_P2P */
  614. hapd_iface->num_bss = conf->num_bss;
  615. hapd_iface->bss = os_calloc(conf->num_bss,
  616. sizeof(struct hostapd_data *));
  617. if (hapd_iface->bss == NULL) {
  618. wpa_supplicant_ap_deinit(wpa_s);
  619. return -1;
  620. }
  621. for (i = 0; i < conf->num_bss; i++) {
  622. hapd_iface->bss[i] =
  623. hostapd_alloc_bss_data(hapd_iface, conf,
  624. conf->bss[i]);
  625. if (hapd_iface->bss[i] == NULL) {
  626. wpa_supplicant_ap_deinit(wpa_s);
  627. return -1;
  628. }
  629. hapd_iface->bss[i]->msg_ctx = wpa_s;
  630. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->p2pdev;
  631. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  632. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  633. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  634. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  635. hostapd_register_probereq_cb(hapd_iface->bss[i],
  636. ap_probe_req_rx, wpa_s);
  637. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  638. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  639. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  640. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  641. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  642. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  643. #ifdef CONFIG_P2P
  644. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  645. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  646. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  647. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  648. ssid);
  649. #endif /* CONFIG_P2P */
  650. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  651. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  652. #ifdef CONFIG_TESTING_OPTIONS
  653. hapd_iface->bss[i]->ext_eapol_frame_io =
  654. wpa_s->ext_eapol_frame_io;
  655. #endif /* CONFIG_TESTING_OPTIONS */
  656. }
  657. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  658. hapd_iface->bss[0]->driver = wpa_s->driver;
  659. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  660. wpa_s->current_ssid = ssid;
  661. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  662. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  663. wpa_s->assoc_freq = ssid->frequency;
  664. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  665. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  666. wpa_supplicant_ap_deinit(wpa_s);
  667. return -1;
  668. }
  669. return 0;
  670. }
  671. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  672. {
  673. #ifdef CONFIG_WPS
  674. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  675. #endif /* CONFIG_WPS */
  676. if (wpa_s->ap_iface == NULL)
  677. return;
  678. wpa_s->current_ssid = NULL;
  679. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  680. wpa_s->assoc_freq = 0;
  681. wpas_p2p_ap_deinit(wpa_s);
  682. wpa_s->ap_iface->driver_ap_teardown =
  683. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  684. hostapd_interface_deinit(wpa_s->ap_iface);
  685. hostapd_interface_free(wpa_s->ap_iface);
  686. wpa_s->ap_iface = NULL;
  687. wpa_drv_deinit_ap(wpa_s);
  688. wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR
  689. " reason=%d locally_generated=1",
  690. MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING);
  691. }
  692. void ap_tx_status(void *ctx, const u8 *addr,
  693. const u8 *buf, size_t len, int ack)
  694. {
  695. #ifdef NEED_AP_MLME
  696. struct wpa_supplicant *wpa_s = ctx;
  697. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  698. #endif /* NEED_AP_MLME */
  699. }
  700. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  701. const u8 *data, size_t len, int ack)
  702. {
  703. #ifdef NEED_AP_MLME
  704. struct wpa_supplicant *wpa_s = ctx;
  705. if (!wpa_s->ap_iface)
  706. return;
  707. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  708. #endif /* NEED_AP_MLME */
  709. }
  710. void ap_client_poll_ok(void *ctx, const u8 *addr)
  711. {
  712. #ifdef NEED_AP_MLME
  713. struct wpa_supplicant *wpa_s = ctx;
  714. if (wpa_s->ap_iface)
  715. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  716. #endif /* NEED_AP_MLME */
  717. }
  718. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  719. {
  720. #ifdef NEED_AP_MLME
  721. struct wpa_supplicant *wpa_s = ctx;
  722. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  723. #endif /* NEED_AP_MLME */
  724. }
  725. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  726. {
  727. #ifdef NEED_AP_MLME
  728. struct wpa_supplicant *wpa_s = ctx;
  729. struct hostapd_frame_info fi;
  730. os_memset(&fi, 0, sizeof(fi));
  731. fi.datarate = rx_mgmt->datarate;
  732. fi.ssi_signal = rx_mgmt->ssi_signal;
  733. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  734. rx_mgmt->frame_len, &fi);
  735. #endif /* NEED_AP_MLME */
  736. }
  737. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  738. {
  739. #ifdef NEED_AP_MLME
  740. struct wpa_supplicant *wpa_s = ctx;
  741. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  742. #endif /* NEED_AP_MLME */
  743. }
  744. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  745. const u8 *src_addr, const u8 *buf, size_t len)
  746. {
  747. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  748. }
  749. #ifdef CONFIG_WPS
  750. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  751. const u8 *p2p_dev_addr)
  752. {
  753. if (!wpa_s->ap_iface)
  754. return -1;
  755. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  756. p2p_dev_addr);
  757. }
  758. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  759. {
  760. struct wps_registrar *reg;
  761. int reg_sel = 0, wps_sta = 0;
  762. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  763. return -1;
  764. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  765. reg_sel = wps_registrar_wps_cancel(reg);
  766. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  767. ap_sta_wps_cancel, NULL);
  768. if (!reg_sel && !wps_sta) {
  769. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  770. "time");
  771. return -1;
  772. }
  773. /*
  774. * There are 2 cases to return wps cancel as success:
  775. * 1. When wps cancel was initiated but no connection has been
  776. * established with client yet.
  777. * 2. Client is in the middle of exchanging WPS messages.
  778. */
  779. return 0;
  780. }
  781. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  782. const char *pin, char *buf, size_t buflen,
  783. int timeout)
  784. {
  785. int ret, ret_len = 0;
  786. if (!wpa_s->ap_iface)
  787. return -1;
  788. if (pin == NULL) {
  789. unsigned int rpin;
  790. if (wps_generate_pin(&rpin) < 0)
  791. return -1;
  792. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  793. if (os_snprintf_error(buflen, ret_len))
  794. return -1;
  795. pin = buf;
  796. } else if (buf) {
  797. ret_len = os_snprintf(buf, buflen, "%s", pin);
  798. if (os_snprintf_error(buflen, ret_len))
  799. return -1;
  800. }
  801. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  802. timeout);
  803. if (ret)
  804. return -1;
  805. return ret_len;
  806. }
  807. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  808. {
  809. struct wpa_supplicant *wpa_s = eloop_data;
  810. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  811. wpas_wps_ap_pin_disable(wpa_s);
  812. }
  813. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  814. {
  815. struct hostapd_data *hapd;
  816. if (wpa_s->ap_iface == NULL)
  817. return;
  818. hapd = wpa_s->ap_iface->bss[0];
  819. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  820. hapd->ap_pin_failures = 0;
  821. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  822. if (timeout > 0)
  823. eloop_register_timeout(timeout, 0,
  824. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  825. }
  826. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  827. {
  828. struct hostapd_data *hapd;
  829. if (wpa_s->ap_iface == NULL)
  830. return;
  831. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  832. hapd = wpa_s->ap_iface->bss[0];
  833. os_free(hapd->conf->ap_pin);
  834. hapd->conf->ap_pin = NULL;
  835. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  836. }
  837. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  838. {
  839. struct hostapd_data *hapd;
  840. unsigned int pin;
  841. char pin_txt[9];
  842. if (wpa_s->ap_iface == NULL)
  843. return NULL;
  844. hapd = wpa_s->ap_iface->bss[0];
  845. if (wps_generate_pin(&pin) < 0)
  846. return NULL;
  847. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  848. os_free(hapd->conf->ap_pin);
  849. hapd->conf->ap_pin = os_strdup(pin_txt);
  850. if (hapd->conf->ap_pin == NULL)
  851. return NULL;
  852. wpas_wps_ap_pin_enable(wpa_s, timeout);
  853. return hapd->conf->ap_pin;
  854. }
  855. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  856. {
  857. struct hostapd_data *hapd;
  858. if (wpa_s->ap_iface == NULL)
  859. return NULL;
  860. hapd = wpa_s->ap_iface->bss[0];
  861. return hapd->conf->ap_pin;
  862. }
  863. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  864. int timeout)
  865. {
  866. struct hostapd_data *hapd;
  867. char pin_txt[9];
  868. int ret;
  869. if (wpa_s->ap_iface == NULL)
  870. return -1;
  871. hapd = wpa_s->ap_iface->bss[0];
  872. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  873. if (os_snprintf_error(sizeof(pin_txt), ret))
  874. return -1;
  875. os_free(hapd->conf->ap_pin);
  876. hapd->conf->ap_pin = os_strdup(pin_txt);
  877. if (hapd->conf->ap_pin == NULL)
  878. return -1;
  879. wpas_wps_ap_pin_enable(wpa_s, timeout);
  880. return 0;
  881. }
  882. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  883. {
  884. struct hostapd_data *hapd;
  885. if (wpa_s->ap_iface == NULL)
  886. return;
  887. hapd = wpa_s->ap_iface->bss[0];
  888. /*
  889. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  890. * PIN if this happens multiple times to slow down brute force attacks.
  891. */
  892. hapd->ap_pin_failures++;
  893. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  894. hapd->ap_pin_failures);
  895. if (hapd->ap_pin_failures < 3)
  896. return;
  897. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  898. hapd->ap_pin_failures = 0;
  899. os_free(hapd->conf->ap_pin);
  900. hapd->conf->ap_pin = NULL;
  901. }
  902. #ifdef CONFIG_WPS_NFC
  903. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  904. int ndef)
  905. {
  906. struct hostapd_data *hapd;
  907. if (wpa_s->ap_iface == NULL)
  908. return NULL;
  909. hapd = wpa_s->ap_iface->bss[0];
  910. return hostapd_wps_nfc_config_token(hapd, ndef);
  911. }
  912. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  913. int ndef)
  914. {
  915. struct hostapd_data *hapd;
  916. if (wpa_s->ap_iface == NULL)
  917. return NULL;
  918. hapd = wpa_s->ap_iface->bss[0];
  919. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  920. }
  921. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  922. const struct wpabuf *req,
  923. const struct wpabuf *sel)
  924. {
  925. struct hostapd_data *hapd;
  926. if (wpa_s->ap_iface == NULL)
  927. return -1;
  928. hapd = wpa_s->ap_iface->bss[0];
  929. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  930. }
  931. #endif /* CONFIG_WPS_NFC */
  932. #endif /* CONFIG_WPS */
  933. #ifdef CONFIG_CTRL_IFACE
  934. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  935. char *buf, size_t buflen)
  936. {
  937. struct hostapd_data *hapd;
  938. if (wpa_s->ap_iface)
  939. hapd = wpa_s->ap_iface->bss[0];
  940. else if (wpa_s->ifmsh)
  941. hapd = wpa_s->ifmsh->bss[0];
  942. else
  943. return -1;
  944. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  945. }
  946. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  947. char *buf, size_t buflen)
  948. {
  949. struct hostapd_data *hapd;
  950. if (wpa_s->ap_iface)
  951. hapd = wpa_s->ap_iface->bss[0];
  952. else if (wpa_s->ifmsh)
  953. hapd = wpa_s->ifmsh->bss[0];
  954. else
  955. return -1;
  956. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  957. }
  958. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  959. char *buf, size_t buflen)
  960. {
  961. struct hostapd_data *hapd;
  962. if (wpa_s->ap_iface)
  963. hapd = wpa_s->ap_iface->bss[0];
  964. else if (wpa_s->ifmsh)
  965. hapd = wpa_s->ifmsh->bss[0];
  966. else
  967. return -1;
  968. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  969. }
  970. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  971. const char *txtaddr)
  972. {
  973. if (wpa_s->ap_iface == NULL)
  974. return -1;
  975. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  976. txtaddr);
  977. }
  978. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  979. const char *txtaddr)
  980. {
  981. if (wpa_s->ap_iface == NULL)
  982. return -1;
  983. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  984. txtaddr);
  985. }
  986. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  987. size_t buflen, int verbose)
  988. {
  989. char *pos = buf, *end = buf + buflen;
  990. int ret;
  991. struct hostapd_bss_config *conf;
  992. if (wpa_s->ap_iface == NULL)
  993. return -1;
  994. conf = wpa_s->ap_iface->bss[0]->conf;
  995. if (conf->wpa == 0)
  996. return 0;
  997. ret = os_snprintf(pos, end - pos,
  998. "pairwise_cipher=%s\n"
  999. "group_cipher=%s\n"
  1000. "key_mgmt=%s\n",
  1001. wpa_cipher_txt(conf->rsn_pairwise),
  1002. wpa_cipher_txt(conf->wpa_group),
  1003. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  1004. conf->wpa));
  1005. if (os_snprintf_error(end - pos, ret))
  1006. return pos - buf;
  1007. pos += ret;
  1008. return pos - buf;
  1009. }
  1010. #endif /* CONFIG_CTRL_IFACE */
  1011. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  1012. {
  1013. struct hostapd_iface *iface = wpa_s->ap_iface;
  1014. struct wpa_ssid *ssid = wpa_s->current_ssid;
  1015. struct hostapd_data *hapd;
  1016. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  1017. ssid->mode == WPAS_MODE_INFRA ||
  1018. ssid->mode == WPAS_MODE_IBSS)
  1019. return -1;
  1020. #ifdef CONFIG_P2P
  1021. if (ssid->mode == WPAS_MODE_P2P_GO)
  1022. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  1023. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  1024. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  1025. P2P_GROUP_FORMATION;
  1026. #endif /* CONFIG_P2P */
  1027. hapd = iface->bss[0];
  1028. if (hapd->drv_priv == NULL)
  1029. return -1;
  1030. ieee802_11_set_beacons(iface);
  1031. hostapd_set_ap_wps_ie(hapd);
  1032. return 0;
  1033. }
  1034. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  1035. struct csa_settings *settings)
  1036. {
  1037. #ifdef NEED_AP_MLME
  1038. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1039. return -1;
  1040. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  1041. #else /* NEED_AP_MLME */
  1042. return -1;
  1043. #endif /* NEED_AP_MLME */
  1044. }
  1045. #ifdef CONFIG_CTRL_IFACE
  1046. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  1047. {
  1048. struct csa_settings settings;
  1049. int ret = hostapd_parse_csa_settings(pos, &settings);
  1050. if (ret)
  1051. return ret;
  1052. return ap_switch_channel(wpa_s, &settings);
  1053. }
  1054. #endif /* CONFIG_CTRL_IFACE */
  1055. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  1056. int offset, int width, int cf1, int cf2)
  1057. {
  1058. if (!wpa_s->ap_iface)
  1059. return;
  1060. wpa_s->assoc_freq = freq;
  1061. if (wpa_s->current_ssid)
  1062. wpa_s->current_ssid->frequency = freq;
  1063. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht,
  1064. offset, width, cf1, cf2);
  1065. }
  1066. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  1067. const u8 *addr)
  1068. {
  1069. struct hostapd_data *hapd;
  1070. struct hostapd_bss_config *conf;
  1071. if (!wpa_s->ap_iface)
  1072. return -1;
  1073. if (addr)
  1074. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  1075. MAC2STR(addr));
  1076. else
  1077. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  1078. hapd = wpa_s->ap_iface->bss[0];
  1079. conf = hapd->conf;
  1080. os_free(conf->accept_mac);
  1081. conf->accept_mac = NULL;
  1082. conf->num_accept_mac = 0;
  1083. os_free(conf->deny_mac);
  1084. conf->deny_mac = NULL;
  1085. conf->num_deny_mac = 0;
  1086. if (addr == NULL) {
  1087. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  1088. return 0;
  1089. }
  1090. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  1091. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  1092. if (conf->accept_mac == NULL)
  1093. return -1;
  1094. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  1095. conf->num_accept_mac = 1;
  1096. return 0;
  1097. }
  1098. #ifdef CONFIG_WPS_NFC
  1099. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  1100. const struct wpabuf *pw, const u8 *pubkey_hash)
  1101. {
  1102. struct hostapd_data *hapd;
  1103. struct wps_context *wps;
  1104. if (!wpa_s->ap_iface)
  1105. return -1;
  1106. hapd = wpa_s->ap_iface->bss[0];
  1107. wps = hapd->wps;
  1108. if (wpa_s->p2pdev->conf->wps_nfc_dh_pubkey == NULL ||
  1109. wpa_s->p2pdev->conf->wps_nfc_dh_privkey == NULL) {
  1110. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1111. return -1;
  1112. }
  1113. dh5_free(wps->dh_ctx);
  1114. wpabuf_free(wps->dh_pubkey);
  1115. wpabuf_free(wps->dh_privkey);
  1116. wps->dh_privkey = wpabuf_dup(
  1117. wpa_s->p2pdev->conf->wps_nfc_dh_privkey);
  1118. wps->dh_pubkey = wpabuf_dup(
  1119. wpa_s->p2pdev->conf->wps_nfc_dh_pubkey);
  1120. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1121. wps->dh_ctx = NULL;
  1122. wpabuf_free(wps->dh_pubkey);
  1123. wps->dh_pubkey = NULL;
  1124. wpabuf_free(wps->dh_privkey);
  1125. wps->dh_privkey = NULL;
  1126. return -1;
  1127. }
  1128. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1129. if (wps->dh_ctx == NULL)
  1130. return -1;
  1131. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1132. pw_id,
  1133. pw ? wpabuf_head(pw) : NULL,
  1134. pw ? wpabuf_len(pw) : 0, 1);
  1135. }
  1136. #endif /* CONFIG_WPS_NFC */
  1137. #ifdef CONFIG_CTRL_IFACE
  1138. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1139. {
  1140. struct hostapd_data *hapd;
  1141. if (!wpa_s->ap_iface)
  1142. return -1;
  1143. hapd = wpa_s->ap_iface->bss[0];
  1144. return hostapd_ctrl_iface_stop_ap(hapd);
  1145. }
  1146. int wpas_ap_pmksa_cache_list(struct wpa_supplicant *wpa_s, char *buf,
  1147. size_t len)
  1148. {
  1149. size_t reply_len = 0, i;
  1150. char ap_delimiter[] = "---- AP ----\n";
  1151. char mesh_delimiter[] = "---- mesh ----\n";
  1152. size_t dlen;
  1153. if (wpa_s->ap_iface) {
  1154. dlen = os_strlen(ap_delimiter);
  1155. if (dlen > len - reply_len)
  1156. return reply_len;
  1157. os_memcpy(&buf[reply_len], ap_delimiter, dlen);
  1158. reply_len += dlen;
  1159. for (i = 0; i < wpa_s->ap_iface->num_bss; i++) {
  1160. reply_len += hostapd_ctrl_iface_pmksa_list(
  1161. wpa_s->ap_iface->bss[i],
  1162. &buf[reply_len], len - reply_len);
  1163. }
  1164. }
  1165. if (wpa_s->ifmsh) {
  1166. dlen = os_strlen(mesh_delimiter);
  1167. if (dlen > len - reply_len)
  1168. return reply_len;
  1169. os_memcpy(&buf[reply_len], mesh_delimiter, dlen);
  1170. reply_len += dlen;
  1171. reply_len += hostapd_ctrl_iface_pmksa_list(
  1172. wpa_s->ifmsh->bss[0], &buf[reply_len],
  1173. len - reply_len);
  1174. }
  1175. return reply_len;
  1176. }
  1177. void wpas_ap_pmksa_cache_flush(struct wpa_supplicant *wpa_s)
  1178. {
  1179. size_t i;
  1180. if (wpa_s->ap_iface) {
  1181. for (i = 0; i < wpa_s->ap_iface->num_bss; i++)
  1182. hostapd_ctrl_iface_pmksa_flush(wpa_s->ap_iface->bss[i]);
  1183. }
  1184. if (wpa_s->ifmsh)
  1185. hostapd_ctrl_iface_pmksa_flush(wpa_s->ifmsh->bss[0]);
  1186. }
  1187. #endif /* CONFIG_CTRL_IFACE */
  1188. #ifdef NEED_AP_MLME
  1189. void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s,
  1190. struct dfs_event *radar)
  1191. {
  1192. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1193. return;
  1194. wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq);
  1195. hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq,
  1196. radar->ht_enabled, radar->chan_offset,
  1197. radar->chan_width,
  1198. radar->cf1, radar->cf2);
  1199. }
  1200. void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s,
  1201. struct dfs_event *radar)
  1202. {
  1203. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1204. return;
  1205. wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq);
  1206. hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq,
  1207. radar->ht_enabled, radar->chan_offset,
  1208. radar->chan_width, radar->cf1, radar->cf2);
  1209. }
  1210. void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s,
  1211. struct dfs_event *radar)
  1212. {
  1213. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1214. return;
  1215. wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq);
  1216. hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq,
  1217. radar->ht_enabled, radar->chan_offset,
  1218. radar->chan_width, radar->cf1, radar->cf2);
  1219. }
  1220. void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s,
  1221. struct dfs_event *radar)
  1222. {
  1223. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1224. return;
  1225. wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq);
  1226. hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq,
  1227. radar->ht_enabled, radar->chan_offset,
  1228. radar->chan_width, radar->cf1, radar->cf2);
  1229. }
  1230. void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s,
  1231. struct dfs_event *radar)
  1232. {
  1233. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1234. return;
  1235. wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq);
  1236. hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq,
  1237. radar->ht_enabled, radar->chan_offset,
  1238. radar->chan_width, radar->cf1, radar->cf2);
  1239. }
  1240. #endif /* NEED_AP_MLME */
  1241. void ap_periodic(struct wpa_supplicant *wpa_s)
  1242. {
  1243. if (wpa_s->ap_iface)
  1244. hostapd_periodic_iface(wpa_s->ap_iface);
  1245. }