ap.c 37 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432
  1. /*
  2. * WPA Supplicant - Basic AP mode support routines
  3. * Copyright (c) 2003-2009, Jouni Malinen <j@w1.fi>
  4. * Copyright (c) 2009, Atheros Communications
  5. *
  6. * This software may be distributed under the terms of the BSD license.
  7. * See README for more details.
  8. */
  9. #include "utils/includes.h"
  10. #include "utils/common.h"
  11. #include "utils/eloop.h"
  12. #include "utils/uuid.h"
  13. #include "common/ieee802_11_defs.h"
  14. #include "common/wpa_ctrl.h"
  15. #include "eapol_supp/eapol_supp_sm.h"
  16. #include "crypto/dh_group5.h"
  17. #include "ap/hostapd.h"
  18. #include "ap/ap_config.h"
  19. #include "ap/ap_drv_ops.h"
  20. #ifdef NEED_AP_MLME
  21. #include "ap/ieee802_11.h"
  22. #endif /* NEED_AP_MLME */
  23. #include "ap/beacon.h"
  24. #include "ap/ieee802_1x.h"
  25. #include "ap/wps_hostapd.h"
  26. #include "ap/ctrl_iface_ap.h"
  27. #include "ap/dfs.h"
  28. #include "wps/wps.h"
  29. #include "common/ieee802_11_defs.h"
  30. #include "config_ssid.h"
  31. #include "config.h"
  32. #include "wpa_supplicant_i.h"
  33. #include "driver_i.h"
  34. #include "p2p_supplicant.h"
  35. #include "ap.h"
  36. #include "ap/sta_info.h"
  37. #include "notify.h"
  38. #ifdef CONFIG_WPS
  39. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx);
  40. #endif /* CONFIG_WPS */
  41. #ifdef CONFIG_IEEE80211N
  42. static void wpas_conf_ap_vht(struct wpa_supplicant *wpa_s,
  43. struct hostapd_config *conf,
  44. struct hostapd_hw_modes *mode)
  45. {
  46. #ifdef CONFIG_P2P
  47. u8 center_chan = 0;
  48. u8 channel = conf->channel;
  49. if (!conf->secondary_channel)
  50. goto no_vht;
  51. switch (conf->vht_oper_chwidth) {
  52. case VHT_CHANWIDTH_80MHZ:
  53. case VHT_CHANWIDTH_80P80MHZ:
  54. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode, channel);
  55. break;
  56. case VHT_CHANWIDTH_160MHZ:
  57. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  58. break;
  59. default:
  60. /*
  61. * conf->vht_oper_chwidth might not be set for non-P2P GO cases,
  62. * try oper_cwidth 160 MHz first then VHT 80 MHz, if 160 MHz is
  63. * not supported.
  64. */
  65. conf->vht_oper_chwidth = VHT_CHANWIDTH_160MHZ;
  66. center_chan = wpas_p2p_get_vht160_center(wpa_s, mode, channel);
  67. if (!center_chan) {
  68. conf->vht_oper_chwidth = VHT_CHANWIDTH_80MHZ;
  69. center_chan = wpas_p2p_get_vht80_center(wpa_s, mode,
  70. channel);
  71. }
  72. break;
  73. }
  74. if (!center_chan)
  75. goto no_vht;
  76. conf->vht_oper_centr_freq_seg0_idx = center_chan;
  77. return;
  78. no_vht:
  79. conf->vht_oper_centr_freq_seg0_idx =
  80. channel + conf->secondary_channel * 2;
  81. #else /* CONFIG_P2P */
  82. conf->vht_oper_centr_freq_seg0_idx =
  83. conf->channel + conf->secondary_channel * 2;
  84. #endif /* CONFIG_P2P */
  85. conf->vht_oper_chwidth = VHT_CHANWIDTH_USE_HT;
  86. }
  87. #endif /* CONFIG_IEEE80211N */
  88. int wpa_supplicant_conf_ap_ht(struct wpa_supplicant *wpa_s,
  89. struct wpa_ssid *ssid,
  90. struct hostapd_config *conf)
  91. {
  92. conf->hw_mode = ieee80211_freq_to_chan(ssid->frequency,
  93. &conf->channel);
  94. if (conf->hw_mode == NUM_HOSTAPD_MODES) {
  95. wpa_printf(MSG_ERROR, "Unsupported AP mode frequency: %d MHz",
  96. ssid->frequency);
  97. return -1;
  98. }
  99. /* TODO: enable HT40 if driver supports it;
  100. * drop to 11b if driver does not support 11g */
  101. #ifdef CONFIG_IEEE80211N
  102. /*
  103. * Enable HT20 if the driver supports it, by setting conf->ieee80211n
  104. * and a mask of allowed capabilities within conf->ht_capab.
  105. * Using default config settings for: conf->ht_op_mode_fixed,
  106. * conf->secondary_channel, conf->require_ht
  107. */
  108. if (wpa_s->hw.modes) {
  109. struct hostapd_hw_modes *mode = NULL;
  110. int i, no_ht = 0;
  111. for (i = 0; i < wpa_s->hw.num_modes; i++) {
  112. if (wpa_s->hw.modes[i].mode == conf->hw_mode) {
  113. mode = &wpa_s->hw.modes[i];
  114. break;
  115. }
  116. }
  117. #ifdef CONFIG_HT_OVERRIDES
  118. if (ssid->disable_ht) {
  119. conf->ieee80211n = 0;
  120. conf->ht_capab = 0;
  121. no_ht = 1;
  122. }
  123. #endif /* CONFIG_HT_OVERRIDES */
  124. if (!no_ht && mode && mode->ht_capab) {
  125. conf->ieee80211n = 1;
  126. #ifdef CONFIG_P2P
  127. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211A &&
  128. (mode->ht_capab &
  129. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET) &&
  130. ssid->ht40)
  131. conf->secondary_channel =
  132. wpas_p2p_get_ht40_mode(wpa_s, mode,
  133. conf->channel);
  134. if (conf->secondary_channel)
  135. conf->ht_capab |=
  136. HT_CAP_INFO_SUPP_CHANNEL_WIDTH_SET;
  137. #endif /* CONFIG_P2P */
  138. /*
  139. * white-list capabilities that won't cause issues
  140. * to connecting stations, while leaving the current
  141. * capabilities intact (currently disabled SMPS).
  142. */
  143. conf->ht_capab |= mode->ht_capab &
  144. (HT_CAP_INFO_GREEN_FIELD |
  145. HT_CAP_INFO_SHORT_GI20MHZ |
  146. HT_CAP_INFO_SHORT_GI40MHZ |
  147. HT_CAP_INFO_RX_STBC_MASK |
  148. HT_CAP_INFO_TX_STBC |
  149. HT_CAP_INFO_MAX_AMSDU_SIZE);
  150. if (mode->vht_capab && ssid->vht) {
  151. conf->ieee80211ac = 1;
  152. wpas_conf_ap_vht(wpa_s, conf, mode);
  153. }
  154. }
  155. }
  156. if (conf->secondary_channel) {
  157. struct wpa_supplicant *iface;
  158. for (iface = wpa_s->global->ifaces; iface; iface = iface->next)
  159. {
  160. if (iface == wpa_s ||
  161. iface->wpa_state < WPA_AUTHENTICATING ||
  162. (int) iface->assoc_freq != ssid->frequency)
  163. continue;
  164. /*
  165. * Do not allow 40 MHz co-ex PRI/SEC switch to force us
  166. * to change our PRI channel since we have an existing,
  167. * concurrent connection on that channel and doing
  168. * multi-channel concurrency is likely to cause more
  169. * harm than using different PRI/SEC selection in
  170. * environment with multiple BSSes on these two channels
  171. * with mixed 20 MHz or PRI channel selection.
  172. */
  173. conf->no_pri_sec_switch = 1;
  174. }
  175. }
  176. #endif /* CONFIG_IEEE80211N */
  177. return 0;
  178. }
  179. static int wpa_supplicant_conf_ap(struct wpa_supplicant *wpa_s,
  180. struct wpa_ssid *ssid,
  181. struct hostapd_config *conf)
  182. {
  183. struct hostapd_bss_config *bss = conf->bss[0];
  184. conf->driver = wpa_s->driver;
  185. os_strlcpy(bss->iface, wpa_s->ifname, sizeof(bss->iface));
  186. if (wpa_supplicant_conf_ap_ht(wpa_s, ssid, conf))
  187. return -1;
  188. #ifdef CONFIG_ACS
  189. if (ssid->acs) {
  190. /* Setting channel to 0 in order to enable ACS */
  191. conf->channel = 0;
  192. wpa_printf(MSG_DEBUG, "Use automatic channel selection");
  193. }
  194. #endif /* CONFIG_ACS */
  195. if (ieee80211_is_dfs(ssid->frequency) && wpa_s->conf->country[0]) {
  196. conf->ieee80211h = 1;
  197. conf->ieee80211d = 1;
  198. conf->country[0] = wpa_s->conf->country[0];
  199. conf->country[1] = wpa_s->conf->country[1];
  200. }
  201. #ifdef CONFIG_P2P
  202. if (conf->hw_mode == HOSTAPD_MODE_IEEE80211G &&
  203. (ssid->mode == WPAS_MODE_P2P_GO ||
  204. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)) {
  205. /* Remove 802.11b rates from supported and basic rate sets */
  206. int *list = os_malloc(4 * sizeof(int));
  207. if (list) {
  208. list[0] = 60;
  209. list[1] = 120;
  210. list[2] = 240;
  211. list[3] = -1;
  212. }
  213. conf->basic_rates = list;
  214. list = os_malloc(9 * sizeof(int));
  215. if (list) {
  216. list[0] = 60;
  217. list[1] = 90;
  218. list[2] = 120;
  219. list[3] = 180;
  220. list[4] = 240;
  221. list[5] = 360;
  222. list[6] = 480;
  223. list[7] = 540;
  224. list[8] = -1;
  225. }
  226. conf->supported_rates = list;
  227. }
  228. bss->isolate = !wpa_s->conf->p2p_intra_bss;
  229. bss->force_per_enrollee_psk = wpa_s->global->p2p_per_sta_psk;
  230. if (ssid->p2p_group) {
  231. os_memcpy(bss->ip_addr_go, wpa_s->parent->conf->ip_addr_go, 4);
  232. os_memcpy(bss->ip_addr_mask, wpa_s->parent->conf->ip_addr_mask,
  233. 4);
  234. os_memcpy(bss->ip_addr_start,
  235. wpa_s->parent->conf->ip_addr_start, 4);
  236. os_memcpy(bss->ip_addr_end, wpa_s->parent->conf->ip_addr_end,
  237. 4);
  238. }
  239. #endif /* CONFIG_P2P */
  240. if (ssid->ssid_len == 0) {
  241. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  242. return -1;
  243. }
  244. os_memcpy(bss->ssid.ssid, ssid->ssid, ssid->ssid_len);
  245. bss->ssid.ssid_len = ssid->ssid_len;
  246. bss->ssid.ssid_set = 1;
  247. bss->ignore_broadcast_ssid = ssid->ignore_broadcast_ssid;
  248. if (ssid->auth_alg)
  249. bss->auth_algs = ssid->auth_alg;
  250. if (wpa_key_mgmt_wpa_psk(ssid->key_mgmt))
  251. bss->wpa = ssid->proto;
  252. bss->wpa_key_mgmt = ssid->key_mgmt;
  253. bss->wpa_pairwise = ssid->pairwise_cipher;
  254. if (ssid->psk_set) {
  255. bin_clear_free(bss->ssid.wpa_psk, sizeof(*bss->ssid.wpa_psk));
  256. bss->ssid.wpa_psk = os_zalloc(sizeof(struct hostapd_wpa_psk));
  257. if (bss->ssid.wpa_psk == NULL)
  258. return -1;
  259. os_memcpy(bss->ssid.wpa_psk->psk, ssid->psk, PMK_LEN);
  260. bss->ssid.wpa_psk->group = 1;
  261. } else if (ssid->passphrase) {
  262. bss->ssid.wpa_passphrase = os_strdup(ssid->passphrase);
  263. } else if (ssid->wep_key_len[0] || ssid->wep_key_len[1] ||
  264. ssid->wep_key_len[2] || ssid->wep_key_len[3]) {
  265. struct hostapd_wep_keys *wep = &bss->ssid.wep;
  266. int i;
  267. for (i = 0; i < NUM_WEP_KEYS; i++) {
  268. if (ssid->wep_key_len[i] == 0)
  269. continue;
  270. wep->key[i] = os_malloc(ssid->wep_key_len[i]);
  271. if (wep->key[i] == NULL)
  272. return -1;
  273. os_memcpy(wep->key[i], ssid->wep_key[i],
  274. ssid->wep_key_len[i]);
  275. wep->len[i] = ssid->wep_key_len[i];
  276. }
  277. wep->idx = ssid->wep_tx_keyidx;
  278. wep->keys_set = 1;
  279. }
  280. if (ssid->ap_max_inactivity)
  281. bss->ap_max_inactivity = ssid->ap_max_inactivity;
  282. if (ssid->dtim_period)
  283. bss->dtim_period = ssid->dtim_period;
  284. else if (wpa_s->conf->dtim_period)
  285. bss->dtim_period = wpa_s->conf->dtim_period;
  286. if (ssid->beacon_int)
  287. conf->beacon_int = ssid->beacon_int;
  288. else if (wpa_s->conf->beacon_int)
  289. conf->beacon_int = wpa_s->conf->beacon_int;
  290. #ifdef CONFIG_P2P
  291. if (ssid->mode == WPAS_MODE_P2P_GO ||
  292. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION) {
  293. if (wpa_s->conf->p2p_go_ctwindow > conf->beacon_int) {
  294. wpa_printf(MSG_INFO,
  295. "CTWindow (%d) is bigger than beacon interval (%d) - avoid configuring it",
  296. wpa_s->conf->p2p_go_ctwindow,
  297. conf->beacon_int);
  298. conf->p2p_go_ctwindow = 0;
  299. } else {
  300. conf->p2p_go_ctwindow = wpa_s->conf->p2p_go_ctwindow;
  301. }
  302. }
  303. #endif /* CONFIG_P2P */
  304. if ((bss->wpa & 2) && bss->rsn_pairwise == 0)
  305. bss->rsn_pairwise = bss->wpa_pairwise;
  306. bss->wpa_group = wpa_select_ap_group_cipher(bss->wpa, bss->wpa_pairwise,
  307. bss->rsn_pairwise);
  308. if (bss->wpa && bss->ieee802_1x)
  309. bss->ssid.security_policy = SECURITY_WPA;
  310. else if (bss->wpa)
  311. bss->ssid.security_policy = SECURITY_WPA_PSK;
  312. else if (bss->ieee802_1x) {
  313. int cipher = WPA_CIPHER_NONE;
  314. bss->ssid.security_policy = SECURITY_IEEE_802_1X;
  315. bss->ssid.wep.default_len = bss->default_wep_key_len;
  316. if (bss->default_wep_key_len)
  317. cipher = bss->default_wep_key_len >= 13 ?
  318. WPA_CIPHER_WEP104 : WPA_CIPHER_WEP40;
  319. bss->wpa_group = cipher;
  320. bss->wpa_pairwise = cipher;
  321. bss->rsn_pairwise = cipher;
  322. } else if (bss->ssid.wep.keys_set) {
  323. int cipher = WPA_CIPHER_WEP40;
  324. if (bss->ssid.wep.len[0] >= 13)
  325. cipher = WPA_CIPHER_WEP104;
  326. bss->ssid.security_policy = SECURITY_STATIC_WEP;
  327. bss->wpa_group = cipher;
  328. bss->wpa_pairwise = cipher;
  329. bss->rsn_pairwise = cipher;
  330. } else {
  331. bss->ssid.security_policy = SECURITY_PLAINTEXT;
  332. bss->wpa_group = WPA_CIPHER_NONE;
  333. bss->wpa_pairwise = WPA_CIPHER_NONE;
  334. bss->rsn_pairwise = WPA_CIPHER_NONE;
  335. }
  336. if (bss->wpa_group_rekey < 86400 && (bss->wpa & 2) &&
  337. (bss->wpa_group == WPA_CIPHER_CCMP ||
  338. bss->wpa_group == WPA_CIPHER_GCMP ||
  339. bss->wpa_group == WPA_CIPHER_CCMP_256 ||
  340. bss->wpa_group == WPA_CIPHER_GCMP_256)) {
  341. /*
  342. * Strong ciphers do not need frequent rekeying, so increase
  343. * the default GTK rekeying period to 24 hours.
  344. */
  345. bss->wpa_group_rekey = 86400;
  346. }
  347. #ifdef CONFIG_IEEE80211W
  348. if (ssid->ieee80211w != MGMT_FRAME_PROTECTION_DEFAULT)
  349. bss->ieee80211w = ssid->ieee80211w;
  350. #endif /* CONFIG_IEEE80211W */
  351. #ifdef CONFIG_WPS
  352. /*
  353. * Enable WPS by default for open and WPA/WPA2-Personal network, but
  354. * require user interaction to actually use it. Only the internal
  355. * Registrar is supported.
  356. */
  357. if (bss->ssid.security_policy != SECURITY_WPA_PSK &&
  358. bss->ssid.security_policy != SECURITY_PLAINTEXT)
  359. goto no_wps;
  360. if (bss->ssid.security_policy == SECURITY_WPA_PSK &&
  361. (!(bss->rsn_pairwise & (WPA_CIPHER_CCMP | WPA_CIPHER_GCMP)) ||
  362. !(bss->wpa & 2)))
  363. goto no_wps; /* WPS2 does not allow WPA/TKIP-only
  364. * configuration */
  365. bss->eap_server = 1;
  366. if (!ssid->ignore_broadcast_ssid)
  367. bss->wps_state = 2;
  368. bss->ap_setup_locked = 2;
  369. if (wpa_s->conf->config_methods)
  370. bss->config_methods = os_strdup(wpa_s->conf->config_methods);
  371. os_memcpy(bss->device_type, wpa_s->conf->device_type,
  372. WPS_DEV_TYPE_LEN);
  373. if (wpa_s->conf->device_name) {
  374. bss->device_name = os_strdup(wpa_s->conf->device_name);
  375. bss->friendly_name = os_strdup(wpa_s->conf->device_name);
  376. }
  377. if (wpa_s->conf->manufacturer)
  378. bss->manufacturer = os_strdup(wpa_s->conf->manufacturer);
  379. if (wpa_s->conf->model_name)
  380. bss->model_name = os_strdup(wpa_s->conf->model_name);
  381. if (wpa_s->conf->model_number)
  382. bss->model_number = os_strdup(wpa_s->conf->model_number);
  383. if (wpa_s->conf->serial_number)
  384. bss->serial_number = os_strdup(wpa_s->conf->serial_number);
  385. if (is_nil_uuid(wpa_s->conf->uuid))
  386. os_memcpy(bss->uuid, wpa_s->wps->uuid, WPS_UUID_LEN);
  387. else
  388. os_memcpy(bss->uuid, wpa_s->conf->uuid, WPS_UUID_LEN);
  389. os_memcpy(bss->os_version, wpa_s->conf->os_version, 4);
  390. bss->pbc_in_m1 = wpa_s->conf->pbc_in_m1;
  391. no_wps:
  392. #endif /* CONFIG_WPS */
  393. if (wpa_s->max_stations &&
  394. wpa_s->max_stations < wpa_s->conf->max_num_sta)
  395. bss->max_num_sta = wpa_s->max_stations;
  396. else
  397. bss->max_num_sta = wpa_s->conf->max_num_sta;
  398. bss->disassoc_low_ack = wpa_s->conf->disassoc_low_ack;
  399. if (wpa_s->conf->ap_vendor_elements) {
  400. bss->vendor_elements =
  401. wpabuf_dup(wpa_s->conf->ap_vendor_elements);
  402. }
  403. bss->pbss = ssid->pbss;
  404. return 0;
  405. }
  406. static void ap_public_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  407. {
  408. #ifdef CONFIG_P2P
  409. struct wpa_supplicant *wpa_s = ctx;
  410. const struct ieee80211_mgmt *mgmt;
  411. mgmt = (const struct ieee80211_mgmt *) buf;
  412. if (len < IEEE80211_HDRLEN + 1)
  413. return;
  414. if (mgmt->u.action.category != WLAN_ACTION_PUBLIC)
  415. return;
  416. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  417. mgmt->u.action.category,
  418. buf + IEEE80211_HDRLEN + 1,
  419. len - IEEE80211_HDRLEN - 1, freq);
  420. #endif /* CONFIG_P2P */
  421. }
  422. static void ap_wps_event_cb(void *ctx, enum wps_event event,
  423. union wps_event_data *data)
  424. {
  425. #ifdef CONFIG_P2P
  426. struct wpa_supplicant *wpa_s = ctx;
  427. if (event == WPS_EV_FAIL) {
  428. struct wps_event_fail *fail = &data->fail;
  429. if (wpa_s->parent && wpa_s->parent != wpa_s &&
  430. wpa_s == wpa_s->global->p2p_group_formation) {
  431. /*
  432. * src/ap/wps_hostapd.c has already sent this on the
  433. * main interface, so only send on the parent interface
  434. * here if needed.
  435. */
  436. wpa_msg(wpa_s->parent, MSG_INFO, WPS_EVENT_FAIL
  437. "msg=%d config_error=%d",
  438. fail->msg, fail->config_error);
  439. }
  440. wpas_p2p_wps_failed(wpa_s, fail);
  441. }
  442. #endif /* CONFIG_P2P */
  443. }
  444. static void ap_sta_authorized_cb(void *ctx, const u8 *mac_addr,
  445. int authorized, const u8 *p2p_dev_addr)
  446. {
  447. wpas_notify_sta_authorized(ctx, mac_addr, authorized, p2p_dev_addr);
  448. }
  449. #ifdef CONFIG_P2P
  450. static void ap_new_psk_cb(void *ctx, const u8 *mac_addr, const u8 *p2p_dev_addr,
  451. const u8 *psk, size_t psk_len)
  452. {
  453. struct wpa_supplicant *wpa_s = ctx;
  454. if (wpa_s->ap_iface == NULL || wpa_s->current_ssid == NULL)
  455. return;
  456. wpas_p2p_new_psk_cb(wpa_s, mac_addr, p2p_dev_addr, psk, psk_len);
  457. }
  458. #endif /* CONFIG_P2P */
  459. static int ap_vendor_action_rx(void *ctx, const u8 *buf, size_t len, int freq)
  460. {
  461. #ifdef CONFIG_P2P
  462. struct wpa_supplicant *wpa_s = ctx;
  463. const struct ieee80211_mgmt *mgmt;
  464. mgmt = (const struct ieee80211_mgmt *) buf;
  465. if (len < IEEE80211_HDRLEN + 1)
  466. return -1;
  467. wpas_p2p_rx_action(wpa_s, mgmt->da, mgmt->sa, mgmt->bssid,
  468. mgmt->u.action.category,
  469. buf + IEEE80211_HDRLEN + 1,
  470. len - IEEE80211_HDRLEN - 1, freq);
  471. #endif /* CONFIG_P2P */
  472. return 0;
  473. }
  474. static int ap_probe_req_rx(void *ctx, const u8 *sa, const u8 *da,
  475. const u8 *bssid, const u8 *ie, size_t ie_len,
  476. int ssi_signal)
  477. {
  478. struct wpa_supplicant *wpa_s = ctx;
  479. unsigned int freq = 0;
  480. if (wpa_s->ap_iface)
  481. freq = wpa_s->ap_iface->freq;
  482. return wpas_p2p_probe_req_rx(wpa_s, sa, da, bssid, ie, ie_len,
  483. freq, ssi_signal);
  484. }
  485. static void ap_wps_reg_success_cb(void *ctx, const u8 *mac_addr,
  486. const u8 *uuid_e)
  487. {
  488. struct wpa_supplicant *wpa_s = ctx;
  489. wpas_p2p_wps_success(wpa_s, mac_addr, 1);
  490. }
  491. static void wpas_ap_configured_cb(void *ctx)
  492. {
  493. struct wpa_supplicant *wpa_s = ctx;
  494. #ifdef CONFIG_ACS
  495. if (wpa_s->current_ssid && wpa_s->current_ssid->acs)
  496. wpa_s->assoc_freq = wpa_s->ap_iface->freq;
  497. #endif /* CONFIG_ACS */
  498. wpa_supplicant_set_state(wpa_s, WPA_COMPLETED);
  499. if (wpa_s->ap_configured_cb)
  500. wpa_s->ap_configured_cb(wpa_s->ap_configured_cb_ctx,
  501. wpa_s->ap_configured_cb_data);
  502. }
  503. int wpa_supplicant_create_ap(struct wpa_supplicant *wpa_s,
  504. struct wpa_ssid *ssid)
  505. {
  506. struct wpa_driver_associate_params params;
  507. struct hostapd_iface *hapd_iface;
  508. struct hostapd_config *conf;
  509. size_t i;
  510. if (ssid->ssid == NULL || ssid->ssid_len == 0) {
  511. wpa_printf(MSG_ERROR, "No SSID configured for AP mode");
  512. return -1;
  513. }
  514. wpa_supplicant_ap_deinit(wpa_s);
  515. wpa_printf(MSG_DEBUG, "Setting up AP (SSID='%s')",
  516. wpa_ssid_txt(ssid->ssid, ssid->ssid_len));
  517. os_memset(&params, 0, sizeof(params));
  518. params.ssid = ssid->ssid;
  519. params.ssid_len = ssid->ssid_len;
  520. switch (ssid->mode) {
  521. case WPAS_MODE_AP:
  522. case WPAS_MODE_P2P_GO:
  523. case WPAS_MODE_P2P_GROUP_FORMATION:
  524. params.mode = IEEE80211_MODE_AP;
  525. break;
  526. default:
  527. return -1;
  528. }
  529. if (ssid->frequency == 0)
  530. ssid->frequency = 2462; /* default channel 11 */
  531. params.freq.freq = ssid->frequency;
  532. params.wpa_proto = ssid->proto;
  533. if (ssid->key_mgmt & WPA_KEY_MGMT_PSK)
  534. wpa_s->key_mgmt = WPA_KEY_MGMT_PSK;
  535. else
  536. wpa_s->key_mgmt = WPA_KEY_MGMT_NONE;
  537. params.key_mgmt_suite = wpa_s->key_mgmt;
  538. wpa_s->pairwise_cipher = wpa_pick_pairwise_cipher(ssid->pairwise_cipher,
  539. 1);
  540. if (wpa_s->pairwise_cipher < 0) {
  541. wpa_printf(MSG_WARNING, "WPA: Failed to select pairwise "
  542. "cipher.");
  543. return -1;
  544. }
  545. params.pairwise_suite = wpa_s->pairwise_cipher;
  546. params.group_suite = params.pairwise_suite;
  547. #ifdef CONFIG_P2P
  548. if (ssid->mode == WPAS_MODE_P2P_GO ||
  549. ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  550. params.p2p = 1;
  551. #endif /* CONFIG_P2P */
  552. if (wpa_s->parent->set_ap_uapsd)
  553. params.uapsd = wpa_s->parent->ap_uapsd;
  554. else if (params.p2p && (wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_UAPSD))
  555. params.uapsd = 1; /* mandatory for P2P GO */
  556. else
  557. params.uapsd = -1;
  558. if (ieee80211_is_dfs(params.freq.freq))
  559. params.freq.freq = 0; /* set channel after CAC */
  560. if (wpa_drv_associate(wpa_s, &params) < 0) {
  561. wpa_msg(wpa_s, MSG_INFO, "Failed to start AP functionality");
  562. return -1;
  563. }
  564. wpa_s->ap_iface = hapd_iface = os_zalloc(sizeof(*wpa_s->ap_iface));
  565. if (hapd_iface == NULL)
  566. return -1;
  567. hapd_iface->owner = wpa_s;
  568. hapd_iface->drv_flags = wpa_s->drv_flags;
  569. hapd_iface->smps_modes = wpa_s->drv_smps_modes;
  570. hapd_iface->probe_resp_offloads = wpa_s->probe_resp_offloads;
  571. hapd_iface->extended_capa = wpa_s->extended_capa;
  572. hapd_iface->extended_capa_mask = wpa_s->extended_capa_mask;
  573. hapd_iface->extended_capa_len = wpa_s->extended_capa_len;
  574. wpa_s->ap_iface->conf = conf = hostapd_config_defaults();
  575. if (conf == NULL) {
  576. wpa_supplicant_ap_deinit(wpa_s);
  577. return -1;
  578. }
  579. /* Use the maximum oper channel width if it's given. */
  580. if (ssid->max_oper_chwidth)
  581. conf->vht_oper_chwidth = ssid->max_oper_chwidth;
  582. ieee80211_freq_to_chan(ssid->vht_center_freq2,
  583. &conf->vht_oper_centr_freq_seg1_idx);
  584. os_memcpy(wpa_s->ap_iface->conf->wmm_ac_params,
  585. wpa_s->conf->wmm_ac_params,
  586. sizeof(wpa_s->conf->wmm_ac_params));
  587. if (params.uapsd > 0) {
  588. conf->bss[0]->wmm_enabled = 1;
  589. conf->bss[0]->wmm_uapsd = 1;
  590. }
  591. if (wpa_supplicant_conf_ap(wpa_s, ssid, conf)) {
  592. wpa_printf(MSG_ERROR, "Failed to create AP configuration");
  593. wpa_supplicant_ap_deinit(wpa_s);
  594. return -1;
  595. }
  596. #ifdef CONFIG_P2P
  597. if (ssid->mode == WPAS_MODE_P2P_GO)
  598. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  599. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  600. conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  601. P2P_GROUP_FORMATION;
  602. #endif /* CONFIG_P2P */
  603. hapd_iface->num_bss = conf->num_bss;
  604. hapd_iface->bss = os_calloc(conf->num_bss,
  605. sizeof(struct hostapd_data *));
  606. if (hapd_iface->bss == NULL) {
  607. wpa_supplicant_ap_deinit(wpa_s);
  608. return -1;
  609. }
  610. for (i = 0; i < conf->num_bss; i++) {
  611. hapd_iface->bss[i] =
  612. hostapd_alloc_bss_data(hapd_iface, conf,
  613. conf->bss[i]);
  614. if (hapd_iface->bss[i] == NULL) {
  615. wpa_supplicant_ap_deinit(wpa_s);
  616. return -1;
  617. }
  618. hapd_iface->bss[i]->msg_ctx = wpa_s;
  619. hapd_iface->bss[i]->msg_ctx_parent = wpa_s->parent;
  620. hapd_iface->bss[i]->public_action_cb = ap_public_action_rx;
  621. hapd_iface->bss[i]->public_action_cb_ctx = wpa_s;
  622. hapd_iface->bss[i]->vendor_action_cb = ap_vendor_action_rx;
  623. hapd_iface->bss[i]->vendor_action_cb_ctx = wpa_s;
  624. hostapd_register_probereq_cb(hapd_iface->bss[i],
  625. ap_probe_req_rx, wpa_s);
  626. hapd_iface->bss[i]->wps_reg_success_cb = ap_wps_reg_success_cb;
  627. hapd_iface->bss[i]->wps_reg_success_cb_ctx = wpa_s;
  628. hapd_iface->bss[i]->wps_event_cb = ap_wps_event_cb;
  629. hapd_iface->bss[i]->wps_event_cb_ctx = wpa_s;
  630. hapd_iface->bss[i]->sta_authorized_cb = ap_sta_authorized_cb;
  631. hapd_iface->bss[i]->sta_authorized_cb_ctx = wpa_s;
  632. #ifdef CONFIG_P2P
  633. hapd_iface->bss[i]->new_psk_cb = ap_new_psk_cb;
  634. hapd_iface->bss[i]->new_psk_cb_ctx = wpa_s;
  635. hapd_iface->bss[i]->p2p = wpa_s->global->p2p;
  636. hapd_iface->bss[i]->p2p_group = wpas_p2p_group_init(wpa_s,
  637. ssid);
  638. #endif /* CONFIG_P2P */
  639. hapd_iface->bss[i]->setup_complete_cb = wpas_ap_configured_cb;
  640. hapd_iface->bss[i]->setup_complete_cb_ctx = wpa_s;
  641. #ifdef CONFIG_TESTING_OPTIONS
  642. hapd_iface->bss[i]->ext_eapol_frame_io =
  643. wpa_s->ext_eapol_frame_io;
  644. #endif /* CONFIG_TESTING_OPTIONS */
  645. }
  646. os_memcpy(hapd_iface->bss[0]->own_addr, wpa_s->own_addr, ETH_ALEN);
  647. hapd_iface->bss[0]->driver = wpa_s->driver;
  648. hapd_iface->bss[0]->drv_priv = wpa_s->drv_priv;
  649. wpa_s->current_ssid = ssid;
  650. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  651. os_memcpy(wpa_s->bssid, wpa_s->own_addr, ETH_ALEN);
  652. wpa_s->assoc_freq = ssid->frequency;
  653. if (hostapd_setup_interface(wpa_s->ap_iface)) {
  654. wpa_printf(MSG_ERROR, "Failed to initialize AP interface");
  655. wpa_supplicant_ap_deinit(wpa_s);
  656. return -1;
  657. }
  658. return 0;
  659. }
  660. void wpa_supplicant_ap_deinit(struct wpa_supplicant *wpa_s)
  661. {
  662. #ifdef CONFIG_WPS
  663. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  664. #endif /* CONFIG_WPS */
  665. if (wpa_s->ap_iface == NULL)
  666. return;
  667. wpa_s->current_ssid = NULL;
  668. eapol_sm_notify_config(wpa_s->eapol, NULL, NULL);
  669. wpa_s->assoc_freq = 0;
  670. wpas_p2p_ap_deinit(wpa_s);
  671. wpa_s->ap_iface->driver_ap_teardown =
  672. !!(wpa_s->drv_flags & WPA_DRIVER_FLAGS_AP_TEARDOWN_SUPPORT);
  673. hostapd_interface_deinit(wpa_s->ap_iface);
  674. hostapd_interface_free(wpa_s->ap_iface);
  675. wpa_s->ap_iface = NULL;
  676. wpa_drv_deinit_ap(wpa_s);
  677. wpa_msg(wpa_s, MSG_INFO, WPA_EVENT_DISCONNECTED "bssid=" MACSTR
  678. " reason=%d locally_generated=1",
  679. MAC2STR(wpa_s->own_addr), WLAN_REASON_DEAUTH_LEAVING);
  680. }
  681. void ap_tx_status(void *ctx, const u8 *addr,
  682. const u8 *buf, size_t len, int ack)
  683. {
  684. #ifdef NEED_AP_MLME
  685. struct wpa_supplicant *wpa_s = ctx;
  686. hostapd_tx_status(wpa_s->ap_iface->bss[0], addr, buf, len, ack);
  687. #endif /* NEED_AP_MLME */
  688. }
  689. void ap_eapol_tx_status(void *ctx, const u8 *dst,
  690. const u8 *data, size_t len, int ack)
  691. {
  692. #ifdef NEED_AP_MLME
  693. struct wpa_supplicant *wpa_s = ctx;
  694. if (!wpa_s->ap_iface)
  695. return;
  696. hostapd_tx_status(wpa_s->ap_iface->bss[0], dst, data, len, ack);
  697. #endif /* NEED_AP_MLME */
  698. }
  699. void ap_client_poll_ok(void *ctx, const u8 *addr)
  700. {
  701. #ifdef NEED_AP_MLME
  702. struct wpa_supplicant *wpa_s = ctx;
  703. if (wpa_s->ap_iface)
  704. hostapd_client_poll_ok(wpa_s->ap_iface->bss[0], addr);
  705. #endif /* NEED_AP_MLME */
  706. }
  707. void ap_rx_from_unknown_sta(void *ctx, const u8 *addr, int wds)
  708. {
  709. #ifdef NEED_AP_MLME
  710. struct wpa_supplicant *wpa_s = ctx;
  711. ieee802_11_rx_from_unknown(wpa_s->ap_iface->bss[0], addr, wds);
  712. #endif /* NEED_AP_MLME */
  713. }
  714. void ap_mgmt_rx(void *ctx, struct rx_mgmt *rx_mgmt)
  715. {
  716. #ifdef NEED_AP_MLME
  717. struct wpa_supplicant *wpa_s = ctx;
  718. struct hostapd_frame_info fi;
  719. os_memset(&fi, 0, sizeof(fi));
  720. fi.datarate = rx_mgmt->datarate;
  721. fi.ssi_signal = rx_mgmt->ssi_signal;
  722. ieee802_11_mgmt(wpa_s->ap_iface->bss[0], rx_mgmt->frame,
  723. rx_mgmt->frame_len, &fi);
  724. #endif /* NEED_AP_MLME */
  725. }
  726. void ap_mgmt_tx_cb(void *ctx, const u8 *buf, size_t len, u16 stype, int ok)
  727. {
  728. #ifdef NEED_AP_MLME
  729. struct wpa_supplicant *wpa_s = ctx;
  730. ieee802_11_mgmt_cb(wpa_s->ap_iface->bss[0], buf, len, stype, ok);
  731. #endif /* NEED_AP_MLME */
  732. }
  733. void wpa_supplicant_ap_rx_eapol(struct wpa_supplicant *wpa_s,
  734. const u8 *src_addr, const u8 *buf, size_t len)
  735. {
  736. ieee802_1x_receive(wpa_s->ap_iface->bss[0], src_addr, buf, len);
  737. }
  738. #ifdef CONFIG_WPS
  739. int wpa_supplicant_ap_wps_pbc(struct wpa_supplicant *wpa_s, const u8 *bssid,
  740. const u8 *p2p_dev_addr)
  741. {
  742. if (!wpa_s->ap_iface)
  743. return -1;
  744. return hostapd_wps_button_pushed(wpa_s->ap_iface->bss[0],
  745. p2p_dev_addr);
  746. }
  747. int wpa_supplicant_ap_wps_cancel(struct wpa_supplicant *wpa_s)
  748. {
  749. struct wps_registrar *reg;
  750. int reg_sel = 0, wps_sta = 0;
  751. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0]->wps)
  752. return -1;
  753. reg = wpa_s->ap_iface->bss[0]->wps->registrar;
  754. reg_sel = wps_registrar_wps_cancel(reg);
  755. wps_sta = ap_for_each_sta(wpa_s->ap_iface->bss[0],
  756. ap_sta_wps_cancel, NULL);
  757. if (!reg_sel && !wps_sta) {
  758. wpa_printf(MSG_DEBUG, "No WPS operation in progress at this "
  759. "time");
  760. return -1;
  761. }
  762. /*
  763. * There are 2 cases to return wps cancel as success:
  764. * 1. When wps cancel was initiated but no connection has been
  765. * established with client yet.
  766. * 2. Client is in the middle of exchanging WPS messages.
  767. */
  768. return 0;
  769. }
  770. int wpa_supplicant_ap_wps_pin(struct wpa_supplicant *wpa_s, const u8 *bssid,
  771. const char *pin, char *buf, size_t buflen,
  772. int timeout)
  773. {
  774. int ret, ret_len = 0;
  775. if (!wpa_s->ap_iface)
  776. return -1;
  777. if (pin == NULL) {
  778. unsigned int rpin = wps_generate_pin();
  779. ret_len = os_snprintf(buf, buflen, "%08d", rpin);
  780. if (os_snprintf_error(buflen, ret_len))
  781. return -1;
  782. pin = buf;
  783. } else if (buf) {
  784. ret_len = os_snprintf(buf, buflen, "%s", pin);
  785. if (os_snprintf_error(buflen, ret_len))
  786. return -1;
  787. }
  788. ret = hostapd_wps_add_pin(wpa_s->ap_iface->bss[0], bssid, "any", pin,
  789. timeout);
  790. if (ret)
  791. return -1;
  792. return ret_len;
  793. }
  794. static void wpas_wps_ap_pin_timeout(void *eloop_data, void *user_ctx)
  795. {
  796. struct wpa_supplicant *wpa_s = eloop_data;
  797. wpa_printf(MSG_DEBUG, "WPS: AP PIN timed out");
  798. wpas_wps_ap_pin_disable(wpa_s);
  799. }
  800. static void wpas_wps_ap_pin_enable(struct wpa_supplicant *wpa_s, int timeout)
  801. {
  802. struct hostapd_data *hapd;
  803. if (wpa_s->ap_iface == NULL)
  804. return;
  805. hapd = wpa_s->ap_iface->bss[0];
  806. wpa_printf(MSG_DEBUG, "WPS: Enabling AP PIN (timeout=%d)", timeout);
  807. hapd->ap_pin_failures = 0;
  808. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  809. if (timeout > 0)
  810. eloop_register_timeout(timeout, 0,
  811. wpas_wps_ap_pin_timeout, wpa_s, NULL);
  812. }
  813. void wpas_wps_ap_pin_disable(struct wpa_supplicant *wpa_s)
  814. {
  815. struct hostapd_data *hapd;
  816. if (wpa_s->ap_iface == NULL)
  817. return;
  818. wpa_printf(MSG_DEBUG, "WPS: Disabling AP PIN");
  819. hapd = wpa_s->ap_iface->bss[0];
  820. os_free(hapd->conf->ap_pin);
  821. hapd->conf->ap_pin = NULL;
  822. eloop_cancel_timeout(wpas_wps_ap_pin_timeout, wpa_s, NULL);
  823. }
  824. const char * wpas_wps_ap_pin_random(struct wpa_supplicant *wpa_s, int timeout)
  825. {
  826. struct hostapd_data *hapd;
  827. unsigned int pin;
  828. char pin_txt[9];
  829. if (wpa_s->ap_iface == NULL)
  830. return NULL;
  831. hapd = wpa_s->ap_iface->bss[0];
  832. pin = wps_generate_pin();
  833. os_snprintf(pin_txt, sizeof(pin_txt), "%08u", pin);
  834. os_free(hapd->conf->ap_pin);
  835. hapd->conf->ap_pin = os_strdup(pin_txt);
  836. if (hapd->conf->ap_pin == NULL)
  837. return NULL;
  838. wpas_wps_ap_pin_enable(wpa_s, timeout);
  839. return hapd->conf->ap_pin;
  840. }
  841. const char * wpas_wps_ap_pin_get(struct wpa_supplicant *wpa_s)
  842. {
  843. struct hostapd_data *hapd;
  844. if (wpa_s->ap_iface == NULL)
  845. return NULL;
  846. hapd = wpa_s->ap_iface->bss[0];
  847. return hapd->conf->ap_pin;
  848. }
  849. int wpas_wps_ap_pin_set(struct wpa_supplicant *wpa_s, const char *pin,
  850. int timeout)
  851. {
  852. struct hostapd_data *hapd;
  853. char pin_txt[9];
  854. int ret;
  855. if (wpa_s->ap_iface == NULL)
  856. return -1;
  857. hapd = wpa_s->ap_iface->bss[0];
  858. ret = os_snprintf(pin_txt, sizeof(pin_txt), "%s", pin);
  859. if (os_snprintf_error(sizeof(pin_txt), ret))
  860. return -1;
  861. os_free(hapd->conf->ap_pin);
  862. hapd->conf->ap_pin = os_strdup(pin_txt);
  863. if (hapd->conf->ap_pin == NULL)
  864. return -1;
  865. wpas_wps_ap_pin_enable(wpa_s, timeout);
  866. return 0;
  867. }
  868. void wpa_supplicant_ap_pwd_auth_fail(struct wpa_supplicant *wpa_s)
  869. {
  870. struct hostapd_data *hapd;
  871. if (wpa_s->ap_iface == NULL)
  872. return;
  873. hapd = wpa_s->ap_iface->bss[0];
  874. /*
  875. * Registrar failed to prove its knowledge of the AP PIN. Disable AP
  876. * PIN if this happens multiple times to slow down brute force attacks.
  877. */
  878. hapd->ap_pin_failures++;
  879. wpa_printf(MSG_DEBUG, "WPS: AP PIN authentication failure number %u",
  880. hapd->ap_pin_failures);
  881. if (hapd->ap_pin_failures < 3)
  882. return;
  883. wpa_printf(MSG_DEBUG, "WPS: Disable AP PIN");
  884. hapd->ap_pin_failures = 0;
  885. os_free(hapd->conf->ap_pin);
  886. hapd->conf->ap_pin = NULL;
  887. }
  888. #ifdef CONFIG_WPS_NFC
  889. struct wpabuf * wpas_ap_wps_nfc_config_token(struct wpa_supplicant *wpa_s,
  890. int ndef)
  891. {
  892. struct hostapd_data *hapd;
  893. if (wpa_s->ap_iface == NULL)
  894. return NULL;
  895. hapd = wpa_s->ap_iface->bss[0];
  896. return hostapd_wps_nfc_config_token(hapd, ndef);
  897. }
  898. struct wpabuf * wpas_ap_wps_nfc_handover_sel(struct wpa_supplicant *wpa_s,
  899. int ndef)
  900. {
  901. struct hostapd_data *hapd;
  902. if (wpa_s->ap_iface == NULL)
  903. return NULL;
  904. hapd = wpa_s->ap_iface->bss[0];
  905. return hostapd_wps_nfc_hs_cr(hapd, ndef);
  906. }
  907. int wpas_ap_wps_nfc_report_handover(struct wpa_supplicant *wpa_s,
  908. const struct wpabuf *req,
  909. const struct wpabuf *sel)
  910. {
  911. struct hostapd_data *hapd;
  912. if (wpa_s->ap_iface == NULL)
  913. return -1;
  914. hapd = wpa_s->ap_iface->bss[0];
  915. return hostapd_wps_nfc_report_handover(hapd, req, sel);
  916. }
  917. #endif /* CONFIG_WPS_NFC */
  918. #endif /* CONFIG_WPS */
  919. #ifdef CONFIG_CTRL_IFACE
  920. int ap_ctrl_iface_sta_first(struct wpa_supplicant *wpa_s,
  921. char *buf, size_t buflen)
  922. {
  923. struct hostapd_data *hapd;
  924. if (wpa_s->ap_iface)
  925. hapd = wpa_s->ap_iface->bss[0];
  926. else if (wpa_s->ifmsh)
  927. hapd = wpa_s->ifmsh->bss[0];
  928. else
  929. return -1;
  930. return hostapd_ctrl_iface_sta_first(hapd, buf, buflen);
  931. }
  932. int ap_ctrl_iface_sta(struct wpa_supplicant *wpa_s, const char *txtaddr,
  933. char *buf, size_t buflen)
  934. {
  935. struct hostapd_data *hapd;
  936. if (wpa_s->ap_iface)
  937. hapd = wpa_s->ap_iface->bss[0];
  938. else if (wpa_s->ifmsh)
  939. hapd = wpa_s->ifmsh->bss[0];
  940. else
  941. return -1;
  942. return hostapd_ctrl_iface_sta(hapd, txtaddr, buf, buflen);
  943. }
  944. int ap_ctrl_iface_sta_next(struct wpa_supplicant *wpa_s, const char *txtaddr,
  945. char *buf, size_t buflen)
  946. {
  947. struct hostapd_data *hapd;
  948. if (wpa_s->ap_iface)
  949. hapd = wpa_s->ap_iface->bss[0];
  950. else if (wpa_s->ifmsh)
  951. hapd = wpa_s->ifmsh->bss[0];
  952. else
  953. return -1;
  954. return hostapd_ctrl_iface_sta_next(hapd, txtaddr, buf, buflen);
  955. }
  956. int ap_ctrl_iface_sta_disassociate(struct wpa_supplicant *wpa_s,
  957. const char *txtaddr)
  958. {
  959. if (wpa_s->ap_iface == NULL)
  960. return -1;
  961. return hostapd_ctrl_iface_disassociate(wpa_s->ap_iface->bss[0],
  962. txtaddr);
  963. }
  964. int ap_ctrl_iface_sta_deauthenticate(struct wpa_supplicant *wpa_s,
  965. const char *txtaddr)
  966. {
  967. if (wpa_s->ap_iface == NULL)
  968. return -1;
  969. return hostapd_ctrl_iface_deauthenticate(wpa_s->ap_iface->bss[0],
  970. txtaddr);
  971. }
  972. int ap_ctrl_iface_wpa_get_status(struct wpa_supplicant *wpa_s, char *buf,
  973. size_t buflen, int verbose)
  974. {
  975. char *pos = buf, *end = buf + buflen;
  976. int ret;
  977. struct hostapd_bss_config *conf;
  978. if (wpa_s->ap_iface == NULL)
  979. return -1;
  980. conf = wpa_s->ap_iface->bss[0]->conf;
  981. if (conf->wpa == 0)
  982. return 0;
  983. ret = os_snprintf(pos, end - pos,
  984. "pairwise_cipher=%s\n"
  985. "group_cipher=%s\n"
  986. "key_mgmt=%s\n",
  987. wpa_cipher_txt(conf->rsn_pairwise),
  988. wpa_cipher_txt(conf->wpa_group),
  989. wpa_key_mgmt_txt(conf->wpa_key_mgmt,
  990. conf->wpa));
  991. if (os_snprintf_error(end - pos, ret))
  992. return pos - buf;
  993. pos += ret;
  994. return pos - buf;
  995. }
  996. #endif /* CONFIG_CTRL_IFACE */
  997. int wpa_supplicant_ap_update_beacon(struct wpa_supplicant *wpa_s)
  998. {
  999. struct hostapd_iface *iface = wpa_s->ap_iface;
  1000. struct wpa_ssid *ssid = wpa_s->current_ssid;
  1001. struct hostapd_data *hapd;
  1002. if (ssid == NULL || wpa_s->ap_iface == NULL ||
  1003. ssid->mode == WPAS_MODE_INFRA ||
  1004. ssid->mode == WPAS_MODE_IBSS)
  1005. return -1;
  1006. #ifdef CONFIG_P2P
  1007. if (ssid->mode == WPAS_MODE_P2P_GO)
  1008. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER;
  1009. else if (ssid->mode == WPAS_MODE_P2P_GROUP_FORMATION)
  1010. iface->conf->bss[0]->p2p = P2P_ENABLED | P2P_GROUP_OWNER |
  1011. P2P_GROUP_FORMATION;
  1012. #endif /* CONFIG_P2P */
  1013. hapd = iface->bss[0];
  1014. if (hapd->drv_priv == NULL)
  1015. return -1;
  1016. ieee802_11_set_beacons(iface);
  1017. hostapd_set_ap_wps_ie(hapd);
  1018. return 0;
  1019. }
  1020. int ap_switch_channel(struct wpa_supplicant *wpa_s,
  1021. struct csa_settings *settings)
  1022. {
  1023. #ifdef NEED_AP_MLME
  1024. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1025. return -1;
  1026. return hostapd_switch_channel(wpa_s->ap_iface->bss[0], settings);
  1027. #else /* NEED_AP_MLME */
  1028. return -1;
  1029. #endif /* NEED_AP_MLME */
  1030. }
  1031. #ifdef CONFIG_CTRL_IFACE
  1032. int ap_ctrl_iface_chanswitch(struct wpa_supplicant *wpa_s, const char *pos)
  1033. {
  1034. struct csa_settings settings;
  1035. int ret = hostapd_parse_csa_settings(pos, &settings);
  1036. if (ret)
  1037. return ret;
  1038. return ap_switch_channel(wpa_s, &settings);
  1039. }
  1040. #endif /* CONFIG_CTRL_IFACE */
  1041. void wpas_ap_ch_switch(struct wpa_supplicant *wpa_s, int freq, int ht,
  1042. int offset, int width, int cf1, int cf2)
  1043. {
  1044. if (!wpa_s->ap_iface)
  1045. return;
  1046. wpa_s->assoc_freq = freq;
  1047. if (wpa_s->current_ssid)
  1048. wpa_s->current_ssid->frequency = freq;
  1049. hostapd_event_ch_switch(wpa_s->ap_iface->bss[0], freq, ht,
  1050. offset, width, cf1, cf2);
  1051. }
  1052. int wpa_supplicant_ap_mac_addr_filter(struct wpa_supplicant *wpa_s,
  1053. const u8 *addr)
  1054. {
  1055. struct hostapd_data *hapd;
  1056. struct hostapd_bss_config *conf;
  1057. if (!wpa_s->ap_iface)
  1058. return -1;
  1059. if (addr)
  1060. wpa_printf(MSG_DEBUG, "AP: Set MAC address filter: " MACSTR,
  1061. MAC2STR(addr));
  1062. else
  1063. wpa_printf(MSG_DEBUG, "AP: Clear MAC address filter");
  1064. hapd = wpa_s->ap_iface->bss[0];
  1065. conf = hapd->conf;
  1066. os_free(conf->accept_mac);
  1067. conf->accept_mac = NULL;
  1068. conf->num_accept_mac = 0;
  1069. os_free(conf->deny_mac);
  1070. conf->deny_mac = NULL;
  1071. conf->num_deny_mac = 0;
  1072. if (addr == NULL) {
  1073. conf->macaddr_acl = ACCEPT_UNLESS_DENIED;
  1074. return 0;
  1075. }
  1076. conf->macaddr_acl = DENY_UNLESS_ACCEPTED;
  1077. conf->accept_mac = os_zalloc(sizeof(struct mac_acl_entry));
  1078. if (conf->accept_mac == NULL)
  1079. return -1;
  1080. os_memcpy(conf->accept_mac[0].addr, addr, ETH_ALEN);
  1081. conf->num_accept_mac = 1;
  1082. return 0;
  1083. }
  1084. #ifdef CONFIG_WPS_NFC
  1085. int wpas_ap_wps_add_nfc_pw(struct wpa_supplicant *wpa_s, u16 pw_id,
  1086. const struct wpabuf *pw, const u8 *pubkey_hash)
  1087. {
  1088. struct hostapd_data *hapd;
  1089. struct wps_context *wps;
  1090. if (!wpa_s->ap_iface)
  1091. return -1;
  1092. hapd = wpa_s->ap_iface->bss[0];
  1093. wps = hapd->wps;
  1094. if (wpa_s->parent->conf->wps_nfc_dh_pubkey == NULL ||
  1095. wpa_s->parent->conf->wps_nfc_dh_privkey == NULL) {
  1096. wpa_printf(MSG_DEBUG, "P2P: No NFC DH key known");
  1097. return -1;
  1098. }
  1099. dh5_free(wps->dh_ctx);
  1100. wpabuf_free(wps->dh_pubkey);
  1101. wpabuf_free(wps->dh_privkey);
  1102. wps->dh_privkey = wpabuf_dup(
  1103. wpa_s->parent->conf->wps_nfc_dh_privkey);
  1104. wps->dh_pubkey = wpabuf_dup(
  1105. wpa_s->parent->conf->wps_nfc_dh_pubkey);
  1106. if (wps->dh_privkey == NULL || wps->dh_pubkey == NULL) {
  1107. wps->dh_ctx = NULL;
  1108. wpabuf_free(wps->dh_pubkey);
  1109. wps->dh_pubkey = NULL;
  1110. wpabuf_free(wps->dh_privkey);
  1111. wps->dh_privkey = NULL;
  1112. return -1;
  1113. }
  1114. wps->dh_ctx = dh5_init_fixed(wps->dh_privkey, wps->dh_pubkey);
  1115. if (wps->dh_ctx == NULL)
  1116. return -1;
  1117. return wps_registrar_add_nfc_pw_token(hapd->wps->registrar, pubkey_hash,
  1118. pw_id,
  1119. pw ? wpabuf_head(pw) : NULL,
  1120. pw ? wpabuf_len(pw) : 0, 1);
  1121. }
  1122. #endif /* CONFIG_WPS_NFC */
  1123. #ifdef CONFIG_CTRL_IFACE
  1124. int wpas_ap_stop_ap(struct wpa_supplicant *wpa_s)
  1125. {
  1126. struct hostapd_data *hapd;
  1127. if (!wpa_s->ap_iface)
  1128. return -1;
  1129. hapd = wpa_s->ap_iface->bss[0];
  1130. return hostapd_ctrl_iface_stop_ap(hapd);
  1131. }
  1132. #endif /* CONFIG_CTRL_IFACE */
  1133. #ifdef NEED_AP_MLME
  1134. void wpas_event_dfs_radar_detected(struct wpa_supplicant *wpa_s,
  1135. struct dfs_event *radar)
  1136. {
  1137. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1138. return;
  1139. wpa_printf(MSG_DEBUG, "DFS radar detected on %d MHz", radar->freq);
  1140. hostapd_dfs_radar_detected(wpa_s->ap_iface, radar->freq,
  1141. radar->ht_enabled, radar->chan_offset,
  1142. radar->chan_width,
  1143. radar->cf1, radar->cf2);
  1144. }
  1145. void wpas_event_dfs_cac_started(struct wpa_supplicant *wpa_s,
  1146. struct dfs_event *radar)
  1147. {
  1148. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1149. return;
  1150. wpa_printf(MSG_DEBUG, "DFS CAC started on %d MHz", radar->freq);
  1151. hostapd_dfs_start_cac(wpa_s->ap_iface, radar->freq,
  1152. radar->ht_enabled, radar->chan_offset,
  1153. radar->chan_width, radar->cf1, radar->cf2);
  1154. }
  1155. void wpas_event_dfs_cac_finished(struct wpa_supplicant *wpa_s,
  1156. struct dfs_event *radar)
  1157. {
  1158. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1159. return;
  1160. wpa_printf(MSG_DEBUG, "DFS CAC finished on %d MHz", radar->freq);
  1161. hostapd_dfs_complete_cac(wpa_s->ap_iface, 1, radar->freq,
  1162. radar->ht_enabled, radar->chan_offset,
  1163. radar->chan_width, radar->cf1, radar->cf2);
  1164. }
  1165. void wpas_event_dfs_cac_aborted(struct wpa_supplicant *wpa_s,
  1166. struct dfs_event *radar)
  1167. {
  1168. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1169. return;
  1170. wpa_printf(MSG_DEBUG, "DFS CAC aborted on %d MHz", radar->freq);
  1171. hostapd_dfs_complete_cac(wpa_s->ap_iface, 0, radar->freq,
  1172. radar->ht_enabled, radar->chan_offset,
  1173. radar->chan_width, radar->cf1, radar->cf2);
  1174. }
  1175. void wpas_event_dfs_cac_nop_finished(struct wpa_supplicant *wpa_s,
  1176. struct dfs_event *radar)
  1177. {
  1178. if (!wpa_s->ap_iface || !wpa_s->ap_iface->bss[0])
  1179. return;
  1180. wpa_printf(MSG_DEBUG, "DFS NOP finished on %d MHz", radar->freq);
  1181. hostapd_dfs_nop_finished(wpa_s->ap_iface, radar->freq,
  1182. radar->ht_enabled, radar->chan_offset,
  1183. radar->chan_width, radar->cf1, radar->cf2);
  1184. }
  1185. #endif /* NEED_AP_MLME */
  1186. void ap_periodic(struct wpa_supplicant *wpa_s)
  1187. {
  1188. if (wpa_s->ap_iface)
  1189. hostapd_periodic_iface(wpa_s->ap_iface);
  1190. }