aes-internal-dec.c 3.6 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161
  1. /*
  2. * AES (Rijndael) cipher - decrypt
  3. *
  4. * Modifications to public domain implementation:
  5. * - cleanup
  6. * - use C pre-processor to make it easier to change S table access
  7. * - added option (AES_SMALL_TABLES) for reducing code size by about 8 kB at
  8. * cost of reduced throughput (quite small difference on Pentium 4,
  9. * 10-25% when using -O1 or -O2 optimization)
  10. *
  11. * Copyright (c) 2003-2012, Jouni Malinen <j@w1.fi>
  12. *
  13. * This software may be distributed under the terms of the BSD license.
  14. * See README for more details.
  15. */
  16. #include "includes.h"
  17. #include "common.h"
  18. #include "crypto.h"
  19. #include "aes_i.h"
  20. /**
  21. * Expand the cipher key into the decryption key schedule.
  22. *
  23. * @return the number of rounds for the given cipher key size.
  24. */
  25. static int rijndaelKeySetupDec(u32 rk[], const u8 cipherKey[], int keyBits)
  26. {
  27. int Nr, i, j;
  28. u32 temp;
  29. /* expand the cipher key: */
  30. Nr = rijndaelKeySetupEnc(rk, cipherKey, keyBits);
  31. if (Nr < 0)
  32. return Nr;
  33. /* invert the order of the round keys: */
  34. for (i = 0, j = 4*Nr; i < j; i += 4, j -= 4) {
  35. temp = rk[i ]; rk[i ] = rk[j ]; rk[j ] = temp;
  36. temp = rk[i + 1]; rk[i + 1] = rk[j + 1]; rk[j + 1] = temp;
  37. temp = rk[i + 2]; rk[i + 2] = rk[j + 2]; rk[j + 2] = temp;
  38. temp = rk[i + 3]; rk[i + 3] = rk[j + 3]; rk[j + 3] = temp;
  39. }
  40. /* apply the inverse MixColumn transform to all round keys but the
  41. * first and the last: */
  42. for (i = 1; i < Nr; i++) {
  43. rk += 4;
  44. for (j = 0; j < 4; j++) {
  45. rk[j] = TD0_(TE4((rk[j] >> 24) )) ^
  46. TD1_(TE4((rk[j] >> 16) & 0xff)) ^
  47. TD2_(TE4((rk[j] >> 8) & 0xff)) ^
  48. TD3_(TE4((rk[j] ) & 0xff));
  49. }
  50. }
  51. return Nr;
  52. }
  53. void * aes_decrypt_init(const u8 *key, size_t len)
  54. {
  55. u32 *rk;
  56. int res;
  57. rk = os_malloc(AES_PRIV_SIZE);
  58. if (rk == NULL)
  59. return NULL;
  60. res = rijndaelKeySetupDec(rk, key, len * 8);
  61. if (res < 0) {
  62. os_free(rk);
  63. return NULL;
  64. }
  65. rk[AES_PRIV_NR_POS] = res;
  66. return rk;
  67. }
  68. static void rijndaelDecrypt(const u32 rk[/*44*/], int Nr, const u8 ct[16],
  69. u8 pt[16])
  70. {
  71. u32 s0, s1, s2, s3, t0, t1, t2, t3;
  72. #ifndef FULL_UNROLL
  73. int r;
  74. #endif /* ?FULL_UNROLL */
  75. /*
  76. * map byte array block to cipher state
  77. * and add initial round key:
  78. */
  79. s0 = GETU32(ct ) ^ rk[0];
  80. s1 = GETU32(ct + 4) ^ rk[1];
  81. s2 = GETU32(ct + 8) ^ rk[2];
  82. s3 = GETU32(ct + 12) ^ rk[3];
  83. #define ROUND(i,d,s) \
  84. d##0 = TD0(s##0) ^ TD1(s##3) ^ TD2(s##2) ^ TD3(s##1) ^ rk[4 * i]; \
  85. d##1 = TD0(s##1) ^ TD1(s##0) ^ TD2(s##3) ^ TD3(s##2) ^ rk[4 * i + 1]; \
  86. d##2 = TD0(s##2) ^ TD1(s##1) ^ TD2(s##0) ^ TD3(s##3) ^ rk[4 * i + 2]; \
  87. d##3 = TD0(s##3) ^ TD1(s##2) ^ TD2(s##1) ^ TD3(s##0) ^ rk[4 * i + 3]
  88. #ifdef FULL_UNROLL
  89. ROUND(1,t,s);
  90. ROUND(2,s,t);
  91. ROUND(3,t,s);
  92. ROUND(4,s,t);
  93. ROUND(5,t,s);
  94. ROUND(6,s,t);
  95. ROUND(7,t,s);
  96. ROUND(8,s,t);
  97. ROUND(9,t,s);
  98. if (Nr > 10) {
  99. ROUND(10,s,t);
  100. ROUND(11,t,s);
  101. if (Nr > 12) {
  102. ROUND(12,s,t);
  103. ROUND(13,t,s);
  104. }
  105. }
  106. rk += Nr << 2;
  107. #else /* !FULL_UNROLL */
  108. /* Nr - 1 full rounds: */
  109. r = Nr >> 1;
  110. for (;;) {
  111. ROUND(1,t,s);
  112. rk += 8;
  113. if (--r == 0)
  114. break;
  115. ROUND(0,s,t);
  116. }
  117. #endif /* ?FULL_UNROLL */
  118. #undef ROUND
  119. /*
  120. * apply last round and
  121. * map cipher state to byte array block:
  122. */
  123. s0 = TD41(t0) ^ TD42(t3) ^ TD43(t2) ^ TD44(t1) ^ rk[0];
  124. PUTU32(pt , s0);
  125. s1 = TD41(t1) ^ TD42(t0) ^ TD43(t3) ^ TD44(t2) ^ rk[1];
  126. PUTU32(pt + 4, s1);
  127. s2 = TD41(t2) ^ TD42(t1) ^ TD43(t0) ^ TD44(t3) ^ rk[2];
  128. PUTU32(pt + 8, s2);
  129. s3 = TD41(t3) ^ TD42(t2) ^ TD43(t1) ^ TD44(t0) ^ rk[3];
  130. PUTU32(pt + 12, s3);
  131. }
  132. void aes_decrypt(void *ctx, const u8 *crypt, u8 *plain)
  133. {
  134. u32 *rk = ctx;
  135. rijndaelDecrypt(ctx, rk[AES_PRIV_NR_POS], crypt, plain);
  136. }
  137. void aes_decrypt_deinit(void *ctx)
  138. {
  139. os_memset(ctx, 0, AES_PRIV_SIZE);
  140. os_free(ctx);
  141. }