hash-table.h 50 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770
  1. /* A type-safe hash table template.
  2. Copyright (C) 2012-2015 Free Software Foundation, Inc.
  3. Contributed by Lawrence Crowl <crowl@google.com>
  4. This file is part of GCC.
  5. GCC is free software; you can redistribute it and/or modify it under
  6. the terms of the GNU General Public License as published by the Free
  7. Software Foundation; either version 3, or (at your option) any later
  8. version.
  9. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  10. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with GCC; see the file COPYING3. If not see
  15. <http://www.gnu.org/licenses/>. */
  16. /* This file implements a typed hash table.
  17. The implementation borrows from libiberty's htab_t in hashtab.h.
  18. INTRODUCTION TO TYPES
  19. Users of the hash table generally need to be aware of three types.
  20. 1. The type being placed into the hash table. This type is called
  21. the value type.
  22. 2. The type used to describe how to handle the value type within
  23. the hash table. This descriptor type provides the hash table with
  24. several things.
  25. - A typedef named 'value_type' to the value type (from above).
  26. - A static member function named 'hash' that takes a value_type
  27. pointer and returns a hashval_t value.
  28. - A typedef named 'compare_type' that is used to test when an value
  29. is found. This type is the comparison type. Usually, it will be the
  30. same as value_type. If it is not the same type, you must generally
  31. explicitly compute hash values and pass them to the hash table.
  32. - A static member function named 'equal' that takes a value_type
  33. pointer and a compare_type pointer, and returns a bool.
  34. - A static function named 'remove' that takes an value_type pointer
  35. and frees the memory allocated by it. This function is used when
  36. individual elements of the table need to be disposed of (e.g.,
  37. when deleting a hash table, removing elements from the table, etc).
  38. 3. The type of the hash table itself. (More later.)
  39. In very special circumstances, users may need to know about a fourth type.
  40. 4. The template type used to describe how hash table memory
  41. is allocated. This type is called the allocator type. It is
  42. parameterized on the value type. It provides four functions.
  43. - A static member function named 'data_alloc'. This function
  44. allocates the data elements in the table.
  45. - A static member function named 'data_free'. This function
  46. deallocates the data elements in the table.
  47. Hash table are instantiated with two type arguments.
  48. * The descriptor type, (2) above.
  49. * The allocator type, (4) above. In general, you will not need to
  50. provide your own allocator type. By default, hash tables will use
  51. the class template xcallocator, which uses malloc/free for allocation.
  52. DEFINING A DESCRIPTOR TYPE
  53. The first task in using the hash table is to describe the element type.
  54. We compose this into a few steps.
  55. 1. Decide on a removal policy for values stored in the table.
  56. This header provides class templates for the two most common
  57. policies.
  58. * typed_free_remove implements the static 'remove' member function
  59. by calling free().
  60. * typed_noop_remove implements the static 'remove' member function
  61. by doing nothing.
  62. You can use these policies by simply deriving the descriptor type
  63. from one of those class template, with the appropriate argument.
  64. Otherwise, you need to write the static 'remove' member function
  65. in the descriptor class.
  66. 2. Choose a hash function. Write the static 'hash' member function.
  67. 3. Choose an equality testing function. In most cases, its two
  68. arguments will be value_type pointers. If not, the first argument must
  69. be a value_type pointer, and the second argument a compare_type pointer.
  70. AN EXAMPLE DESCRIPTOR TYPE
  71. Suppose you want to put some_type into the hash table. You could define
  72. the descriptor type as follows.
  73. struct some_type_hasher : typed_noop_remove <some_type>
  74. // Deriving from typed_noop_remove means that we get a 'remove' that does
  75. // nothing. This choice is good for raw values.
  76. {
  77. typedef some_type value_type;
  78. typedef some_type compare_type;
  79. static inline hashval_t hash (const value_type *);
  80. static inline bool equal (const value_type *, const compare_type *);
  81. };
  82. inline hashval_t
  83. some_type_hasher::hash (const value_type *e)
  84. { ... compute and return a hash value for E ... }
  85. inline bool
  86. some_type_hasher::equal (const value_type *p1, const compare_type *p2)
  87. { ... compare P1 vs P2. Return true if they are the 'same' ... }
  88. AN EXAMPLE HASH_TABLE DECLARATION
  89. To instantiate a hash table for some_type:
  90. hash_table <some_type_hasher> some_type_hash_table;
  91. There is no need to mention some_type directly, as the hash table will
  92. obtain it using some_type_hasher::value_type.
  93. You can then used any of the functions in hash_table's public interface.
  94. See hash_table for details. The interface is very similar to libiberty's
  95. htab_t.
  96. EASY DESCRIPTORS FOR POINTERS
  97. The class template pointer_hash provides everything you need to hash
  98. pointers (as opposed to what they point to). So, to instantiate a hash
  99. table over pointers to whatever_type,
  100. hash_table <pointer_hash <whatever_type>> whatever_type_hash_table;
  101. HASH TABLE ITERATORS
  102. The hash table provides standard C++ iterators. For example, consider a
  103. hash table of some_info. We wish to consume each element of the table:
  104. extern void consume (some_info *);
  105. We define a convenience typedef and the hash table:
  106. typedef hash_table <some_info_hasher> info_table_type;
  107. info_table_type info_table;
  108. Then we write the loop in typical C++ style:
  109. for (info_table_type::iterator iter = info_table.begin ();
  110. iter != info_table.end ();
  111. ++iter)
  112. if ((*iter).status == INFO_READY)
  113. consume (&*iter);
  114. Or with common sub-expression elimination:
  115. for (info_table_type::iterator iter = info_table.begin ();
  116. iter != info_table.end ();
  117. ++iter)
  118. {
  119. some_info &elem = *iter;
  120. if (elem.status == INFO_READY)
  121. consume (&elem);
  122. }
  123. One can also use a more typical GCC style:
  124. typedef some_info *some_info_p;
  125. some_info *elem_ptr;
  126. info_table_type::iterator iter;
  127. FOR_EACH_HASH_TABLE_ELEMENT (info_table, elem_ptr, some_info_p, iter)
  128. if (elem_ptr->status == INFO_READY)
  129. consume (elem_ptr);
  130. */
  131. #ifndef TYPED_HASHTAB_H
  132. #define TYPED_HASHTAB_H
  133. #include "ggc.h"
  134. #include "hashtab.h"
  135. #include <new>
  136. template<typename, typename, typename> class hash_map;
  137. template<typename, typename> class hash_set;
  138. /* The ordinary memory allocator. */
  139. /* FIXME (crowl): This allocator may be extracted for wider sharing later. */
  140. template <typename Type>
  141. struct xcallocator
  142. {
  143. static Type *data_alloc (size_t count);
  144. static void data_free (Type *memory);
  145. };
  146. /* Allocate memory for COUNT data blocks. */
  147. template <typename Type>
  148. inline Type *
  149. xcallocator <Type>::data_alloc (size_t count)
  150. {
  151. return static_cast <Type *> (xcalloc (count, sizeof (Type)));
  152. }
  153. /* Free memory for data blocks. */
  154. template <typename Type>
  155. inline void
  156. xcallocator <Type>::data_free (Type *memory)
  157. {
  158. return ::free (memory);
  159. }
  160. /* Helpful type for removing with free. */
  161. template <typename Type>
  162. struct typed_free_remove
  163. {
  164. static inline void remove (Type *p);
  165. };
  166. /* Remove with free. */
  167. template <typename Type>
  168. inline void
  169. typed_free_remove <Type>::remove (Type *p)
  170. {
  171. free (p);
  172. }
  173. /* Helpful type for a no-op remove. */
  174. template <typename Type>
  175. struct typed_noop_remove
  176. {
  177. static inline void remove (Type *p);
  178. };
  179. /* Remove doing nothing. */
  180. template <typename Type>
  181. inline void
  182. typed_noop_remove <Type>::remove (Type *p ATTRIBUTE_UNUSED)
  183. {
  184. }
  185. /* Pointer hash with a no-op remove method. */
  186. template <typename Type>
  187. struct pointer_hash : typed_noop_remove <Type>
  188. {
  189. typedef Type *value_type;
  190. typedef Type *compare_type;
  191. typedef int store_values_directly;
  192. static inline hashval_t hash (const value_type &);
  193. static inline bool equal (const value_type &existing,
  194. const compare_type &candidate);
  195. };
  196. template <typename Type>
  197. inline hashval_t
  198. pointer_hash <Type>::hash (const value_type &candidate)
  199. {
  200. /* This is a really poor hash function, but it is what the current code uses,
  201. so I am reusing it to avoid an additional axis in testing. */
  202. return (hashval_t) ((intptr_t)candidate >> 3);
  203. }
  204. template <typename Type>
  205. inline bool
  206. pointer_hash <Type>::equal (const value_type &existing,
  207. const compare_type &candidate)
  208. {
  209. return existing == candidate;
  210. }
  211. /* Hasher for entry in gc memory. */
  212. template<typename T>
  213. struct ggc_hasher
  214. {
  215. typedef T value_type;
  216. typedef T compare_type;
  217. typedef int store_values_directly;
  218. static void remove (T) {}
  219. static void
  220. ggc_mx (T p)
  221. {
  222. extern void gt_ggc_mx (T &);
  223. gt_ggc_mx (p);
  224. }
  225. static void
  226. pch_nx (T &p)
  227. {
  228. extern void gt_pch_nx (T &);
  229. gt_pch_nx (p);
  230. }
  231. static void
  232. pch_nx (T &p, gt_pointer_operator op, void *cookie)
  233. {
  234. op (&p, cookie);
  235. }
  236. };
  237. /* Hasher for cache entry in gc memory. */
  238. template<typename T>
  239. struct ggc_cache_hasher
  240. {
  241. typedef T value_type;
  242. typedef T compare_type;
  243. typedef int store_values_directly;
  244. static void remove (T &) {}
  245. /* Entries are weakly held because this is for caches. */
  246. static void ggc_mx (T &) {}
  247. static void
  248. pch_nx (T &p)
  249. {
  250. extern void gt_pch_nx (T &);
  251. gt_pch_nx (p);
  252. }
  253. static void
  254. pch_nx (T &p, gt_pointer_operator op, void *cookie)
  255. {
  256. op (&p, cookie);
  257. }
  258. /* Clear out entries if they are about to be gc'd. */
  259. static void
  260. handle_cache_entry (T &e)
  261. {
  262. if (e != HTAB_EMPTY_ENTRY && e != HTAB_DELETED_ENTRY && !ggc_marked_p (e))
  263. e = static_cast<T> (HTAB_DELETED_ENTRY);
  264. }
  265. };
  266. /* Table of primes and their inversion information. */
  267. struct prime_ent
  268. {
  269. hashval_t prime;
  270. hashval_t inv;
  271. hashval_t inv_m2; /* inverse of prime-2 */
  272. hashval_t shift;
  273. };
  274. extern struct prime_ent const prime_tab[];
  275. /* Functions for computing hash table indexes. */
  276. extern unsigned int hash_table_higher_prime_index (unsigned long n)
  277. ATTRIBUTE_PURE;
  278. /* Return X % Y using multiplicative inverse values INV and SHIFT.
  279. The multiplicative inverses computed above are for 32-bit types,
  280. and requires that we be able to compute a highpart multiply.
  281. FIX: I am not at all convinced that
  282. 3 loads, 2 multiplications, 3 shifts, and 3 additions
  283. will be faster than
  284. 1 load and 1 modulus
  285. on modern systems running a compiler. */
  286. inline hashval_t
  287. mul_mod (hashval_t x, hashval_t y, hashval_t inv, int shift)
  288. {
  289. hashval_t t1, t2, t3, t4, q, r;
  290. t1 = ((uint64_t)x * inv) >> 32;
  291. t2 = x - t1;
  292. t3 = t2 >> 1;
  293. t4 = t1 + t3;
  294. q = t4 >> shift;
  295. r = x - (q * y);
  296. return r;
  297. }
  298. /* Compute the primary table index for HASH given current prime index. */
  299. inline hashval_t
  300. hash_table_mod1 (hashval_t hash, unsigned int index)
  301. {
  302. const struct prime_ent *p = &prime_tab[index];
  303. gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
  304. return mul_mod (hash, p->prime, p->inv, p->shift);
  305. }
  306. /* Compute the secondary table index for HASH given current prime index. */
  307. inline hashval_t
  308. hash_table_mod2 (hashval_t hash, unsigned int index)
  309. {
  310. const struct prime_ent *p = &prime_tab[index];
  311. gcc_checking_assert (sizeof (hashval_t) * CHAR_BIT <= 32);
  312. return 1 + mul_mod (hash, p->prime - 2, p->inv_m2, p->shift);
  313. }
  314. /* The below is some template meta programming to decide if we should use the
  315. hash table partial specialization that directly stores value_type instead of
  316. pointers to value_type. If the Descriptor type defines the type
  317. Descriptor::store_values_directly then values are stored directly otherwise
  318. pointers to them are stored. */
  319. template<typename T> struct notype { typedef void type; };
  320. template<typename T, typename = void>
  321. struct storage_tester
  322. {
  323. static const bool value = false;
  324. };
  325. template<typename T>
  326. struct storage_tester<T, typename notype<typename
  327. T::store_values_directly>::type>
  328. {
  329. static const bool value = true;
  330. };
  331. template<typename Traits>
  332. struct has_is_deleted
  333. {
  334. template<typename U, bool (*)(U &)> struct helper {};
  335. template<typename U> static char test (helper<U, U::is_deleted> *);
  336. template<typename U> static int test (...);
  337. static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
  338. };
  339. template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
  340. struct is_deleted_helper
  341. {
  342. static inline bool
  343. call (Type &v)
  344. {
  345. return Traits::is_deleted (v);
  346. }
  347. };
  348. template<typename Type, typename Traits>
  349. struct is_deleted_helper<Type *, Traits, false>
  350. {
  351. static inline bool
  352. call (Type *v)
  353. {
  354. return v == HTAB_DELETED_ENTRY;
  355. }
  356. };
  357. template<typename Traits>
  358. struct has_is_empty
  359. {
  360. template<typename U, bool (*)(U &)> struct helper {};
  361. template<typename U> static char test (helper<U, U::is_empty> *);
  362. template<typename U> static int test (...);
  363. static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
  364. };
  365. template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
  366. struct is_empty_helper
  367. {
  368. static inline bool
  369. call (Type &v)
  370. {
  371. return Traits::is_empty (v);
  372. }
  373. };
  374. template<typename Type, typename Traits>
  375. struct is_empty_helper<Type *, Traits, false>
  376. {
  377. static inline bool
  378. call (Type *v)
  379. {
  380. return v == HTAB_EMPTY_ENTRY;
  381. }
  382. };
  383. template<typename Traits>
  384. struct has_mark_deleted
  385. {
  386. template<typename U, void (*)(U &)> struct helper {};
  387. template<typename U> static char test (helper<U, U::mark_deleted> *);
  388. template<typename U> static int test (...);
  389. static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
  390. };
  391. template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
  392. struct mark_deleted_helper
  393. {
  394. static inline void
  395. call (Type &v)
  396. {
  397. Traits::mark_deleted (v);
  398. }
  399. };
  400. template<typename Type, typename Traits>
  401. struct mark_deleted_helper<Type *, Traits, false>
  402. {
  403. static inline void
  404. call (Type *&v)
  405. {
  406. v = static_cast<Type *> (HTAB_DELETED_ENTRY);
  407. }
  408. };
  409. template<typename Traits>
  410. struct has_mark_empty
  411. {
  412. template<typename U, void (*)(U &)> struct helper {};
  413. template<typename U> static char test (helper<U, U::mark_empty> *);
  414. template<typename U> static int test (...);
  415. static const bool value = sizeof (test<Traits> (0)) == sizeof (char);
  416. };
  417. template<typename Type, typename Traits, bool = has_is_deleted<Traits>::value>
  418. struct mark_empty_helper
  419. {
  420. static inline void
  421. call (Type &v)
  422. {
  423. Traits::mark_empty (v);
  424. }
  425. };
  426. template<typename Type, typename Traits>
  427. struct mark_empty_helper<Type *, Traits, false>
  428. {
  429. static inline void
  430. call (Type *&v)
  431. {
  432. v = static_cast<Type *> (HTAB_EMPTY_ENTRY);
  433. }
  434. };
  435. /* User-facing hash table type.
  436. The table stores elements of type Descriptor::value_type, or pointers to
  437. objects of type value_type if the descriptor does not define the type
  438. store_values_directly.
  439. It hashes values with the hash member function.
  440. The table currently works with relatively weak hash functions.
  441. Use typed_pointer_hash <Value> when hashing pointers instead of objects.
  442. It compares elements with the equal member function.
  443. Two elements with the same hash may not be equal.
  444. Use typed_pointer_equal <Value> when hashing pointers instead of objects.
  445. It removes elements with the remove member function.
  446. This feature is useful for freeing memory.
  447. Derive from typed_null_remove <Value> when not freeing objects.
  448. Derive from typed_free_remove <Value> when doing a simple object free.
  449. Specify the template Allocator to allocate and free memory.
  450. The default is xcallocator.
  451. Storage is an implementation detail and should not be used outside the
  452. hash table code.
  453. */
  454. template <typename Descriptor,
  455. template<typename Type> class Allocator= xcallocator,
  456. bool Storage = storage_tester<Descriptor>::value>
  457. class hash_table
  458. {
  459. };
  460. template <typename Descriptor,
  461. template<typename Type> class Allocator>
  462. class hash_table<Descriptor, Allocator, false>
  463. {
  464. typedef typename Descriptor::value_type value_type;
  465. typedef typename Descriptor::compare_type compare_type;
  466. public:
  467. hash_table (size_t);
  468. ~hash_table ();
  469. /* Current size (in entries) of the hash table. */
  470. size_t size () const { return m_size; }
  471. /* Return the current number of elements in this hash table. */
  472. size_t elements () const { return m_n_elements - m_n_deleted; }
  473. /* Return the current number of elements in this hash table. */
  474. size_t elements_with_deleted () const { return m_n_elements; }
  475. /* This function clears all entries in the given hash table. */
  476. void empty ();
  477. /* This function clears a specified SLOT in a hash table. It is
  478. useful when you've already done the lookup and don't want to do it
  479. again. */
  480. void clear_slot (value_type **);
  481. /* This function searches for a hash table entry equal to the given
  482. COMPARABLE element starting with the given HASH value. It cannot
  483. be used to insert or delete an element. */
  484. value_type *find_with_hash (const compare_type *, hashval_t);
  485. /* Like find_slot_with_hash, but compute the hash value from the element. */
  486. value_type *find (const value_type *value)
  487. {
  488. return find_with_hash (value, Descriptor::hash (value));
  489. }
  490. value_type **find_slot (const value_type *value, insert_option insert)
  491. {
  492. return find_slot_with_hash (value, Descriptor::hash (value), insert);
  493. }
  494. /* This function searches for a hash table slot containing an entry
  495. equal to the given COMPARABLE element and starting with the given
  496. HASH. To delete an entry, call this with insert=NO_INSERT, then
  497. call clear_slot on the slot returned (possibly after doing some
  498. checks). To insert an entry, call this with insert=INSERT, then
  499. write the value you want into the returned slot. When inserting an
  500. entry, NULL may be returned if memory allocation fails. */
  501. value_type **find_slot_with_hash (const compare_type *comparable,
  502. hashval_t hash, enum insert_option insert);
  503. /* This function deletes an element with the given COMPARABLE value
  504. from hash table starting with the given HASH. If there is no
  505. matching element in the hash table, this function does nothing. */
  506. void remove_elt_with_hash (const compare_type *, hashval_t);
  507. /* Like remove_elt_with_hash, but compute the hash value from the element. */
  508. void remove_elt (const value_type *value)
  509. {
  510. remove_elt_with_hash (value, Descriptor::hash (value));
  511. }
  512. /* This function scans over the entire hash table calling CALLBACK for
  513. each live entry. If CALLBACK returns false, the iteration stops.
  514. ARGUMENT is passed as CALLBACK's second argument. */
  515. template <typename Argument,
  516. int (*Callback) (value_type **slot, Argument argument)>
  517. void traverse_noresize (Argument argument);
  518. /* Like traverse_noresize, but does resize the table when it is too empty
  519. to improve effectivity of subsequent calls. */
  520. template <typename Argument,
  521. int (*Callback) (value_type **slot, Argument argument)>
  522. void traverse (Argument argument);
  523. class iterator
  524. {
  525. public:
  526. iterator () : m_slot (NULL), m_limit (NULL) {}
  527. iterator (value_type **slot, value_type **limit) :
  528. m_slot (slot), m_limit (limit) {}
  529. inline value_type *operator * () { return *m_slot; }
  530. void slide ();
  531. inline iterator &operator ++ ();
  532. bool operator != (const iterator &other) const
  533. {
  534. return m_slot != other.m_slot || m_limit != other.m_limit;
  535. }
  536. private:
  537. value_type **m_slot;
  538. value_type **m_limit;
  539. };
  540. iterator begin () const
  541. {
  542. iterator iter (m_entries, m_entries + m_size);
  543. iter.slide ();
  544. return iter;
  545. }
  546. iterator end () const { return iterator (); }
  547. double collisions () const
  548. {
  549. return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
  550. }
  551. private:
  552. value_type **find_empty_slot_for_expand (hashval_t);
  553. void expand ();
  554. /* Table itself. */
  555. typename Descriptor::value_type **m_entries;
  556. size_t m_size;
  557. /* Current number of elements including also deleted elements. */
  558. size_t m_n_elements;
  559. /* Current number of deleted elements in the table. */
  560. size_t m_n_deleted;
  561. /* The following member is used for debugging. Its value is number
  562. of all calls of `htab_find_slot' for the hash table. */
  563. unsigned int m_searches;
  564. /* The following member is used for debugging. Its value is number
  565. of collisions fixed for time of work with the hash table. */
  566. unsigned int m_collisions;
  567. /* Current size (in entries) of the hash table, as an index into the
  568. table of primes. */
  569. unsigned int m_size_prime_index;
  570. };
  571. template<typename Descriptor, template<typename Type> class Allocator>
  572. hash_table<Descriptor, Allocator, false>::hash_table (size_t size) :
  573. m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0)
  574. {
  575. unsigned int size_prime_index;
  576. size_prime_index = hash_table_higher_prime_index (size);
  577. size = prime_tab[size_prime_index].prime;
  578. m_entries = Allocator <value_type*> ::data_alloc (size);
  579. gcc_assert (m_entries != NULL);
  580. m_size = size;
  581. m_size_prime_index = size_prime_index;
  582. }
  583. template<typename Descriptor, template<typename Type> class Allocator>
  584. hash_table<Descriptor, Allocator, false>::~hash_table ()
  585. {
  586. for (size_t i = m_size - 1; i < m_size; i--)
  587. if (m_entries[i] != HTAB_EMPTY_ENTRY && m_entries[i] != HTAB_DELETED_ENTRY)
  588. Descriptor::remove (m_entries[i]);
  589. Allocator <value_type *> ::data_free (m_entries);
  590. }
  591. /* Similar to find_slot, but without several unwanted side effects:
  592. - Does not call equal when it finds an existing entry.
  593. - Does not change the count of elements/searches/collisions in the
  594. hash table.
  595. This function also assumes there are no deleted entries in the table.
  596. HASH is the hash value for the element to be inserted. */
  597. template<typename Descriptor, template<typename Type> class Allocator>
  598. typename hash_table<Descriptor, Allocator, false>::value_type **
  599. hash_table<Descriptor, Allocator, false>
  600. ::find_empty_slot_for_expand (hashval_t hash)
  601. {
  602. hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  603. size_t size = m_size;
  604. value_type **slot = m_entries + index;
  605. hashval_t hash2;
  606. if (*slot == HTAB_EMPTY_ENTRY)
  607. return slot;
  608. gcc_checking_assert (*slot != HTAB_DELETED_ENTRY);
  609. hash2 = hash_table_mod2 (hash, m_size_prime_index);
  610. for (;;)
  611. {
  612. index += hash2;
  613. if (index >= size)
  614. index -= size;
  615. slot = m_entries + index;
  616. if (*slot == HTAB_EMPTY_ENTRY)
  617. return slot;
  618. gcc_checking_assert (*slot != HTAB_DELETED_ENTRY);
  619. }
  620. }
  621. /* The following function changes size of memory allocated for the
  622. entries and repeatedly inserts the table elements. The occupancy
  623. of the table after the call will be about 50%. Naturally the hash
  624. table must already exist. Remember also that the place of the
  625. table entries is changed. If memory allocation fails, this function
  626. will abort. */
  627. template<typename Descriptor, template<typename Type> class Allocator>
  628. void
  629. hash_table<Descriptor, Allocator, false>::expand ()
  630. {
  631. value_type **oentries = m_entries;
  632. unsigned int oindex = m_size_prime_index;
  633. size_t osize = size ();
  634. value_type **olimit = oentries + osize;
  635. size_t elts = elements ();
  636. /* Resize only when table after removal of unused elements is either
  637. too full or too empty. */
  638. unsigned int nindex;
  639. size_t nsize;
  640. if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
  641. {
  642. nindex = hash_table_higher_prime_index (elts * 2);
  643. nsize = prime_tab[nindex].prime;
  644. }
  645. else
  646. {
  647. nindex = oindex;
  648. nsize = osize;
  649. }
  650. value_type **nentries = Allocator <value_type *> ::data_alloc (nsize);
  651. gcc_assert (nentries != NULL);
  652. m_entries = nentries;
  653. m_size = nsize;
  654. m_size_prime_index = nindex;
  655. m_n_elements -= m_n_deleted;
  656. m_n_deleted = 0;
  657. value_type **p = oentries;
  658. do
  659. {
  660. value_type *x = *p;
  661. if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
  662. {
  663. value_type **q = find_empty_slot_for_expand (Descriptor::hash (x));
  664. *q = x;
  665. }
  666. p++;
  667. }
  668. while (p < olimit);
  669. Allocator <value_type *> ::data_free (oentries);
  670. }
  671. template<typename Descriptor, template<typename Type> class Allocator>
  672. void
  673. hash_table<Descriptor, Allocator, false>::empty ()
  674. {
  675. size_t size = m_size;
  676. value_type **entries = m_entries;
  677. int i;
  678. for (i = size - 1; i >= 0; i--)
  679. if (entries[i] != HTAB_EMPTY_ENTRY && entries[i] != HTAB_DELETED_ENTRY)
  680. Descriptor::remove (entries[i]);
  681. /* Instead of clearing megabyte, downsize the table. */
  682. if (size > 1024*1024 / sizeof (PTR))
  683. {
  684. int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
  685. int nsize = prime_tab[nindex].prime;
  686. Allocator <value_type *> ::data_free (m_entries);
  687. m_entries = Allocator <value_type *> ::data_alloc (nsize);
  688. m_size = nsize;
  689. m_size_prime_index = nindex;
  690. }
  691. else
  692. memset (entries, 0, size * sizeof (value_type *));
  693. m_n_deleted = 0;
  694. m_n_elements = 0;
  695. }
  696. /* This function clears a specified SLOT in a hash table. It is
  697. useful when you've already done the lookup and don't want to do it
  698. again. */
  699. template<typename Descriptor, template<typename Type> class Allocator>
  700. void
  701. hash_table<Descriptor, Allocator, false>::clear_slot (value_type **slot)
  702. {
  703. gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
  704. || *slot == HTAB_EMPTY_ENTRY
  705. || *slot == HTAB_DELETED_ENTRY));
  706. Descriptor::remove (*slot);
  707. *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
  708. m_n_deleted++;
  709. }
  710. /* This function searches for a hash table entry equal to the given
  711. COMPARABLE element starting with the given HASH value. It cannot
  712. be used to insert or delete an element. */
  713. template<typename Descriptor, template<typename Type> class Allocator>
  714. typename hash_table<Descriptor, Allocator, false>::value_type *
  715. hash_table<Descriptor, Allocator, false>
  716. ::find_with_hash (const compare_type *comparable, hashval_t hash)
  717. {
  718. m_searches++;
  719. size_t size = m_size;
  720. hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  721. value_type *entry = m_entries[index];
  722. if (entry == HTAB_EMPTY_ENTRY
  723. || (entry != HTAB_DELETED_ENTRY && Descriptor::equal (entry, comparable)))
  724. return entry;
  725. hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  726. for (;;)
  727. {
  728. m_collisions++;
  729. index += hash2;
  730. if (index >= size)
  731. index -= size;
  732. entry = m_entries[index];
  733. if (entry == HTAB_EMPTY_ENTRY
  734. || (entry != HTAB_DELETED_ENTRY
  735. && Descriptor::equal (entry, comparable)))
  736. return entry;
  737. }
  738. }
  739. /* This function searches for a hash table slot containing an entry
  740. equal to the given COMPARABLE element and starting with the given
  741. HASH. To delete an entry, call this with insert=NO_INSERT, then
  742. call clear_slot on the slot returned (possibly after doing some
  743. checks). To insert an entry, call this with insert=INSERT, then
  744. write the value you want into the returned slot. When inserting an
  745. entry, NULL may be returned if memory allocation fails. */
  746. template<typename Descriptor, template<typename Type> class Allocator>
  747. typename hash_table<Descriptor, Allocator, false>::value_type **
  748. hash_table<Descriptor, Allocator, false>
  749. ::find_slot_with_hash (const compare_type *comparable, hashval_t hash,
  750. enum insert_option insert)
  751. {
  752. if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
  753. expand ();
  754. m_searches++;
  755. value_type **first_deleted_slot = NULL;
  756. hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  757. hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  758. value_type *entry = m_entries[index];
  759. size_t size = m_size;
  760. if (entry == HTAB_EMPTY_ENTRY)
  761. goto empty_entry;
  762. else if (entry == HTAB_DELETED_ENTRY)
  763. first_deleted_slot = &m_entries[index];
  764. else if (Descriptor::equal (entry, comparable))
  765. return &m_entries[index];
  766. for (;;)
  767. {
  768. m_collisions++;
  769. index += hash2;
  770. if (index >= size)
  771. index -= size;
  772. entry = m_entries[index];
  773. if (entry == HTAB_EMPTY_ENTRY)
  774. goto empty_entry;
  775. else if (entry == HTAB_DELETED_ENTRY)
  776. {
  777. if (!first_deleted_slot)
  778. first_deleted_slot = &m_entries[index];
  779. }
  780. else if (Descriptor::equal (entry, comparable))
  781. return &m_entries[index];
  782. }
  783. empty_entry:
  784. if (insert == NO_INSERT)
  785. return NULL;
  786. if (first_deleted_slot)
  787. {
  788. m_n_deleted--;
  789. *first_deleted_slot = static_cast <value_type *> (HTAB_EMPTY_ENTRY);
  790. return first_deleted_slot;
  791. }
  792. m_n_elements++;
  793. return &m_entries[index];
  794. }
  795. /* This function deletes an element with the given COMPARABLE value
  796. from hash table starting with the given HASH. If there is no
  797. matching element in the hash table, this function does nothing. */
  798. template<typename Descriptor, template<typename Type> class Allocator>
  799. void
  800. hash_table<Descriptor, Allocator, false>
  801. ::remove_elt_with_hash (const compare_type *comparable, hashval_t hash)
  802. {
  803. value_type **slot = find_slot_with_hash (comparable, hash, NO_INSERT);
  804. if (*slot == HTAB_EMPTY_ENTRY)
  805. return;
  806. Descriptor::remove (*slot);
  807. *slot = static_cast <value_type *> (HTAB_DELETED_ENTRY);
  808. m_n_deleted++;
  809. }
  810. /* This function scans over the entire hash table calling CALLBACK for
  811. each live entry. If CALLBACK returns false, the iteration stops.
  812. ARGUMENT is passed as CALLBACK's second argument. */
  813. template<typename Descriptor, template<typename Type> class Allocator>
  814. template<typename Argument,
  815. int (*Callback) (typename hash_table<Descriptor, Allocator,
  816. false>::value_type **slot,
  817. Argument argument)>
  818. void
  819. hash_table<Descriptor, Allocator, false>::traverse_noresize (Argument argument)
  820. {
  821. value_type **slot = m_entries;
  822. value_type **limit = slot + size ();
  823. do
  824. {
  825. value_type *x = *slot;
  826. if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
  827. if (! Callback (slot, argument))
  828. break;
  829. }
  830. while (++slot < limit);
  831. }
  832. /* Like traverse_noresize, but does resize the table when it is too empty
  833. to improve effectivity of subsequent calls. */
  834. template <typename Descriptor,
  835. template <typename Type> class Allocator>
  836. template <typename Argument,
  837. int (*Callback) (typename hash_table<Descriptor, Allocator,
  838. false>::value_type **slot,
  839. Argument argument)>
  840. void
  841. hash_table<Descriptor, Allocator, false>::traverse (Argument argument)
  842. {
  843. size_t size = m_size;
  844. if (elements () * 8 < size && size > 32)
  845. expand ();
  846. traverse_noresize <Argument, Callback> (argument);
  847. }
  848. /* Slide down the iterator slots until an active entry is found. */
  849. template<typename Descriptor, template<typename Type> class Allocator>
  850. void
  851. hash_table<Descriptor, Allocator, false>::iterator::slide ()
  852. {
  853. for ( ; m_slot < m_limit; ++m_slot )
  854. {
  855. value_type *x = *m_slot;
  856. if (x != HTAB_EMPTY_ENTRY && x != HTAB_DELETED_ENTRY)
  857. return;
  858. }
  859. m_slot = NULL;
  860. m_limit = NULL;
  861. }
  862. /* Bump the iterator. */
  863. template<typename Descriptor, template<typename Type> class Allocator>
  864. inline typename hash_table<Descriptor, Allocator, false>::iterator &
  865. hash_table<Descriptor, Allocator, false>::iterator::operator ++ ()
  866. {
  867. ++m_slot;
  868. slide ();
  869. return *this;
  870. }
  871. /* A partial specialization used when values should be stored directly. */
  872. template <typename Descriptor,
  873. template<typename Type> class Allocator>
  874. class hash_table<Descriptor, Allocator, true>
  875. {
  876. typedef typename Descriptor::value_type value_type;
  877. typedef typename Descriptor::compare_type compare_type;
  878. public:
  879. explicit hash_table (size_t, bool ggc = false);
  880. ~hash_table ();
  881. /* Create a hash_table in gc memory. */
  882. static hash_table *
  883. create_ggc (size_t n)
  884. {
  885. hash_table *table = ggc_alloc<hash_table> ();
  886. new (table) hash_table (n, true);
  887. return table;
  888. }
  889. /* Current size (in entries) of the hash table. */
  890. size_t size () const { return m_size; }
  891. /* Return the current number of elements in this hash table. */
  892. size_t elements () const { return m_n_elements - m_n_deleted; }
  893. /* Return the current number of elements in this hash table. */
  894. size_t elements_with_deleted () const { return m_n_elements; }
  895. /* This function clears all entries in the given hash table. */
  896. void empty ();
  897. /* This function clears a specified SLOT in a hash table. It is
  898. useful when you've already done the lookup and don't want to do it
  899. again. */
  900. void clear_slot (value_type *);
  901. /* This function searches for a hash table entry equal to the given
  902. COMPARABLE element starting with the given HASH value. It cannot
  903. be used to insert or delete an element. */
  904. value_type &find_with_hash (const compare_type &, hashval_t);
  905. /* Like find_slot_with_hash, but compute the hash value from the element. */
  906. value_type &find (const value_type &value)
  907. {
  908. return find_with_hash (value, Descriptor::hash (value));
  909. }
  910. value_type *find_slot (const value_type &value, insert_option insert)
  911. {
  912. return find_slot_with_hash (value, Descriptor::hash (value), insert);
  913. }
  914. /* This function searches for a hash table slot containing an entry
  915. equal to the given COMPARABLE element and starting with the given
  916. HASH. To delete an entry, call this with insert=NO_INSERT, then
  917. call clear_slot on the slot returned (possibly after doing some
  918. checks). To insert an entry, call this with insert=INSERT, then
  919. write the value you want into the returned slot. When inserting an
  920. entry, NULL may be returned if memory allocation fails. */
  921. value_type *find_slot_with_hash (const compare_type &comparable,
  922. hashval_t hash, enum insert_option insert);
  923. /* This function deletes an element with the given COMPARABLE value
  924. from hash table starting with the given HASH. If there is no
  925. matching element in the hash table, this function does nothing. */
  926. void remove_elt_with_hash (const compare_type &, hashval_t);
  927. /* Like remove_elt_with_hash, but compute the hash value from the element. */
  928. void remove_elt (const value_type &value)
  929. {
  930. remove_elt_with_hash (value, Descriptor::hash (value));
  931. }
  932. /* This function scans over the entire hash table calling CALLBACK for
  933. each live entry. If CALLBACK returns false, the iteration stops.
  934. ARGUMENT is passed as CALLBACK's second argument. */
  935. template <typename Argument,
  936. int (*Callback) (value_type *slot, Argument argument)>
  937. void traverse_noresize (Argument argument);
  938. /* Like traverse_noresize, but does resize the table when it is too empty
  939. to improve effectivity of subsequent calls. */
  940. template <typename Argument,
  941. int (*Callback) (value_type *slot, Argument argument)>
  942. void traverse (Argument argument);
  943. class iterator
  944. {
  945. public:
  946. iterator () : m_slot (NULL), m_limit (NULL) {}
  947. iterator (value_type *slot, value_type *limit) :
  948. m_slot (slot), m_limit (limit) {}
  949. inline value_type &operator * () { return *m_slot; }
  950. void slide ();
  951. inline iterator &operator ++ ();
  952. bool operator != (const iterator &other) const
  953. {
  954. return m_slot != other.m_slot || m_limit != other.m_limit;
  955. }
  956. private:
  957. value_type *m_slot;
  958. value_type *m_limit;
  959. };
  960. iterator begin () const
  961. {
  962. iterator iter (m_entries, m_entries + m_size);
  963. iter.slide ();
  964. return iter;
  965. }
  966. iterator end () const { return iterator (); }
  967. double collisions () const
  968. {
  969. return m_searches ? static_cast <double> (m_collisions) / m_searches : 0;
  970. }
  971. private:
  972. template<typename T> friend void gt_ggc_mx (hash_table<T> *);
  973. template<typename T> friend void gt_pch_nx (hash_table<T> *);
  974. template<typename T> friend void
  975. hashtab_entry_note_pointers (void *, void *, gt_pointer_operator, void *);
  976. template<typename T, typename U, typename V> friend void
  977. gt_pch_nx (hash_map<T, U, V> *, gt_pointer_operator, void *);
  978. template<typename T, typename U> friend void gt_pch_nx (hash_set<T, U> *,
  979. gt_pointer_operator,
  980. void *);
  981. template<typename T> friend void gt_pch_nx (hash_table<T> *,
  982. gt_pointer_operator, void *);
  983. value_type *alloc_entries (size_t n) const;
  984. value_type *find_empty_slot_for_expand (hashval_t);
  985. void expand ();
  986. static bool is_deleted (value_type &v)
  987. {
  988. return is_deleted_helper<value_type, Descriptor>::call (v);
  989. }
  990. static bool is_empty (value_type &v)
  991. {
  992. return is_empty_helper<value_type, Descriptor>::call (v);
  993. }
  994. static void mark_deleted (value_type &v)
  995. {
  996. return mark_deleted_helper<value_type, Descriptor>::call (v);
  997. }
  998. static void mark_empty (value_type &v)
  999. {
  1000. return mark_empty_helper<value_type, Descriptor>::call (v);
  1001. }
  1002. /* Table itself. */
  1003. typename Descriptor::value_type *m_entries;
  1004. size_t m_size;
  1005. /* Current number of elements including also deleted elements. */
  1006. size_t m_n_elements;
  1007. /* Current number of deleted elements in the table. */
  1008. size_t m_n_deleted;
  1009. /* The following member is used for debugging. Its value is number
  1010. of all calls of `htab_find_slot' for the hash table. */
  1011. unsigned int m_searches;
  1012. /* The following member is used for debugging. Its value is number
  1013. of collisions fixed for time of work with the hash table. */
  1014. unsigned int m_collisions;
  1015. /* Current size (in entries) of the hash table, as an index into the
  1016. table of primes. */
  1017. unsigned int m_size_prime_index;
  1018. /* if m_entries is stored in ggc memory. */
  1019. bool m_ggc;
  1020. };
  1021. template<typename Descriptor, template<typename Type> class Allocator>
  1022. hash_table<Descriptor, Allocator, true>::hash_table (size_t size, bool ggc) :
  1023. m_n_elements (0), m_n_deleted (0), m_searches (0), m_collisions (0),
  1024. m_ggc (ggc)
  1025. {
  1026. unsigned int size_prime_index;
  1027. size_prime_index = hash_table_higher_prime_index (size);
  1028. size = prime_tab[size_prime_index].prime;
  1029. m_entries = alloc_entries (size);
  1030. m_size = size;
  1031. m_size_prime_index = size_prime_index;
  1032. }
  1033. template<typename Descriptor, template<typename Type> class Allocator>
  1034. hash_table<Descriptor, Allocator, true>::~hash_table ()
  1035. {
  1036. for (size_t i = m_size - 1; i < m_size; i--)
  1037. if (!is_empty (m_entries[i]) && !is_deleted (m_entries[i]))
  1038. Descriptor::remove (m_entries[i]);
  1039. if (!m_ggc)
  1040. Allocator <value_type> ::data_free (m_entries);
  1041. else
  1042. ggc_free (m_entries);
  1043. }
  1044. /* This function returns an array of empty hash table elements. */
  1045. template<typename Descriptor, template<typename Type> class Allocator>
  1046. inline typename hash_table<Descriptor, Allocator, true>::value_type *
  1047. hash_table<Descriptor, Allocator, true>::alloc_entries (size_t n) const
  1048. {
  1049. value_type *nentries;
  1050. if (!m_ggc)
  1051. nentries = Allocator <value_type> ::data_alloc (n);
  1052. else
  1053. nentries = ::ggc_cleared_vec_alloc<value_type> (n);
  1054. gcc_assert (nentries != NULL);
  1055. for (size_t i = 0; i < n; i++)
  1056. mark_empty (nentries[i]);
  1057. return nentries;
  1058. }
  1059. /* Similar to find_slot, but without several unwanted side effects:
  1060. - Does not call equal when it finds an existing entry.
  1061. - Does not change the count of elements/searches/collisions in the
  1062. hash table.
  1063. This function also assumes there are no deleted entries in the table.
  1064. HASH is the hash value for the element to be inserted. */
  1065. template<typename Descriptor, template<typename Type> class Allocator>
  1066. typename hash_table<Descriptor, Allocator, true>::value_type *
  1067. hash_table<Descriptor, Allocator, true>
  1068. ::find_empty_slot_for_expand (hashval_t hash)
  1069. {
  1070. hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  1071. size_t size = m_size;
  1072. value_type *slot = m_entries + index;
  1073. hashval_t hash2;
  1074. if (is_empty (*slot))
  1075. return slot;
  1076. #ifdef ENABLE_CHECKING
  1077. gcc_checking_assert (!is_deleted (*slot));
  1078. #endif
  1079. hash2 = hash_table_mod2 (hash, m_size_prime_index);
  1080. for (;;)
  1081. {
  1082. index += hash2;
  1083. if (index >= size)
  1084. index -= size;
  1085. slot = m_entries + index;
  1086. if (is_empty (*slot))
  1087. return slot;
  1088. #ifdef ENABLE_CHECKING
  1089. gcc_checking_assert (!is_deleted (*slot));
  1090. #endif
  1091. }
  1092. }
  1093. /* The following function changes size of memory allocated for the
  1094. entries and repeatedly inserts the table elements. The occupancy
  1095. of the table after the call will be about 50%. Naturally the hash
  1096. table must already exist. Remember also that the place of the
  1097. table entries is changed. If memory allocation fails, this function
  1098. will abort. */
  1099. template<typename Descriptor, template<typename Type> class Allocator>
  1100. void
  1101. hash_table<Descriptor, Allocator, true>::expand ()
  1102. {
  1103. value_type *oentries = m_entries;
  1104. unsigned int oindex = m_size_prime_index;
  1105. size_t osize = size ();
  1106. value_type *olimit = oentries + osize;
  1107. size_t elts = elements ();
  1108. /* Resize only when table after removal of unused elements is either
  1109. too full or too empty. */
  1110. unsigned int nindex;
  1111. size_t nsize;
  1112. if (elts * 2 > osize || (elts * 8 < osize && osize > 32))
  1113. {
  1114. nindex = hash_table_higher_prime_index (elts * 2);
  1115. nsize = prime_tab[nindex].prime;
  1116. }
  1117. else
  1118. {
  1119. nindex = oindex;
  1120. nsize = osize;
  1121. }
  1122. value_type *nentries = alloc_entries (nsize);
  1123. m_entries = nentries;
  1124. m_size = nsize;
  1125. m_size_prime_index = nindex;
  1126. m_n_elements -= m_n_deleted;
  1127. m_n_deleted = 0;
  1128. value_type *p = oentries;
  1129. do
  1130. {
  1131. value_type &x = *p;
  1132. if (!is_empty (x) && !is_deleted (x))
  1133. {
  1134. value_type *q = find_empty_slot_for_expand (Descriptor::hash (x));
  1135. *q = x;
  1136. }
  1137. p++;
  1138. }
  1139. while (p < olimit);
  1140. if (!m_ggc)
  1141. Allocator <value_type> ::data_free (oentries);
  1142. else
  1143. ggc_free (oentries);
  1144. }
  1145. template<typename Descriptor, template<typename Type> class Allocator>
  1146. void
  1147. hash_table<Descriptor, Allocator, true>::empty ()
  1148. {
  1149. size_t size = m_size;
  1150. value_type *entries = m_entries;
  1151. int i;
  1152. for (i = size - 1; i >= 0; i--)
  1153. if (!is_empty (entries[i]) && !is_deleted (entries[i]))
  1154. Descriptor::remove (entries[i]);
  1155. /* Instead of clearing megabyte, downsize the table. */
  1156. if (size > 1024*1024 / sizeof (PTR))
  1157. {
  1158. int nindex = hash_table_higher_prime_index (1024 / sizeof (PTR));
  1159. int nsize = prime_tab[nindex].prime;
  1160. if (!m_ggc)
  1161. Allocator <value_type> ::data_free (m_entries);
  1162. else
  1163. ggc_free (m_entries);
  1164. m_entries = alloc_entries (nsize);
  1165. m_size = nsize;
  1166. m_size_prime_index = nindex;
  1167. }
  1168. else
  1169. memset (entries, 0, size * sizeof (value_type));
  1170. m_n_deleted = 0;
  1171. m_n_elements = 0;
  1172. }
  1173. /* This function clears a specified SLOT in a hash table. It is
  1174. useful when you've already done the lookup and don't want to do it
  1175. again. */
  1176. template<typename Descriptor, template<typename Type> class Allocator>
  1177. void
  1178. hash_table<Descriptor, Allocator, true>::clear_slot (value_type *slot)
  1179. {
  1180. gcc_checking_assert (!(slot < m_entries || slot >= m_entries + size ()
  1181. || is_empty (*slot) || is_deleted (*slot)));
  1182. Descriptor::remove (*slot);
  1183. mark_deleted (*slot);
  1184. m_n_deleted++;
  1185. }
  1186. /* This function searches for a hash table entry equal to the given
  1187. COMPARABLE element starting with the given HASH value. It cannot
  1188. be used to insert or delete an element. */
  1189. template<typename Descriptor, template<typename Type> class Allocator>
  1190. typename hash_table<Descriptor, Allocator, true>::value_type &
  1191. hash_table<Descriptor, Allocator, true>
  1192. ::find_with_hash (const compare_type &comparable, hashval_t hash)
  1193. {
  1194. m_searches++;
  1195. size_t size = m_size;
  1196. hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  1197. value_type *entry = &m_entries[index];
  1198. if (is_empty (*entry)
  1199. || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
  1200. return *entry;
  1201. hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  1202. for (;;)
  1203. {
  1204. m_collisions++;
  1205. index += hash2;
  1206. if (index >= size)
  1207. index -= size;
  1208. entry = &m_entries[index];
  1209. if (is_empty (*entry)
  1210. || (!is_deleted (*entry) && Descriptor::equal (*entry, comparable)))
  1211. return *entry;
  1212. }
  1213. }
  1214. /* This function searches for a hash table slot containing an entry
  1215. equal to the given COMPARABLE element and starting with the given
  1216. HASH. To delete an entry, call this with insert=NO_INSERT, then
  1217. call clear_slot on the slot returned (possibly after doing some
  1218. checks). To insert an entry, call this with insert=INSERT, then
  1219. write the value you want into the returned slot. When inserting an
  1220. entry, NULL may be returned if memory allocation fails. */
  1221. template<typename Descriptor, template<typename Type> class Allocator>
  1222. typename hash_table<Descriptor, Allocator, true>::value_type *
  1223. hash_table<Descriptor, Allocator, true>
  1224. ::find_slot_with_hash (const compare_type &comparable, hashval_t hash,
  1225. enum insert_option insert)
  1226. {
  1227. if (insert == INSERT && m_size * 3 <= m_n_elements * 4)
  1228. expand ();
  1229. m_searches++;
  1230. value_type *first_deleted_slot = NULL;
  1231. hashval_t index = hash_table_mod1 (hash, m_size_prime_index);
  1232. hashval_t hash2 = hash_table_mod2 (hash, m_size_prime_index);
  1233. value_type *entry = &m_entries[index];
  1234. size_t size = m_size;
  1235. if (is_empty (*entry))
  1236. goto empty_entry;
  1237. else if (is_deleted (*entry))
  1238. first_deleted_slot = &m_entries[index];
  1239. else if (Descriptor::equal (*entry, comparable))
  1240. return &m_entries[index];
  1241. for (;;)
  1242. {
  1243. m_collisions++;
  1244. index += hash2;
  1245. if (index >= size)
  1246. index -= size;
  1247. entry = &m_entries[index];
  1248. if (is_empty (*entry))
  1249. goto empty_entry;
  1250. else if (is_deleted (*entry))
  1251. {
  1252. if (!first_deleted_slot)
  1253. first_deleted_slot = &m_entries[index];
  1254. }
  1255. else if (Descriptor::equal (*entry, comparable))
  1256. return &m_entries[index];
  1257. }
  1258. empty_entry:
  1259. if (insert == NO_INSERT)
  1260. return NULL;
  1261. if (first_deleted_slot)
  1262. {
  1263. m_n_deleted--;
  1264. mark_empty (*first_deleted_slot);
  1265. return first_deleted_slot;
  1266. }
  1267. m_n_elements++;
  1268. return &m_entries[index];
  1269. }
  1270. /* This function deletes an element with the given COMPARABLE value
  1271. from hash table starting with the given HASH. If there is no
  1272. matching element in the hash table, this function does nothing. */
  1273. template<typename Descriptor, template<typename Type> class Allocator>
  1274. void
  1275. hash_table<Descriptor, Allocator, true>
  1276. ::remove_elt_with_hash (const compare_type &comparable, hashval_t hash)
  1277. {
  1278. value_type *slot = find_slot_with_hash (comparable, hash, NO_INSERT);
  1279. if (is_empty (*slot))
  1280. return;
  1281. Descriptor::remove (*slot);
  1282. mark_deleted (*slot);
  1283. m_n_deleted++;
  1284. }
  1285. /* This function scans over the entire hash table calling CALLBACK for
  1286. each live entry. If CALLBACK returns false, the iteration stops.
  1287. ARGUMENT is passed as CALLBACK's second argument. */
  1288. template<typename Descriptor,
  1289. template<typename Type> class Allocator>
  1290. template<typename Argument,
  1291. int (*Callback) (typename hash_table<Descriptor, Allocator,
  1292. true>::value_type *slot,
  1293. Argument argument)>
  1294. void
  1295. hash_table<Descriptor, Allocator, true>::traverse_noresize (Argument argument)
  1296. {
  1297. value_type *slot = m_entries;
  1298. value_type *limit = slot + size ();
  1299. do
  1300. {
  1301. value_type &x = *slot;
  1302. if (!is_empty (x) && !is_deleted (x))
  1303. if (! Callback (slot, argument))
  1304. break;
  1305. }
  1306. while (++slot < limit);
  1307. }
  1308. /* Like traverse_noresize, but does resize the table when it is too empty
  1309. to improve effectivity of subsequent calls. */
  1310. template <typename Descriptor,
  1311. template <typename Type> class Allocator>
  1312. template <typename Argument,
  1313. int (*Callback) (typename hash_table<Descriptor, Allocator,
  1314. true>::value_type *slot,
  1315. Argument argument)>
  1316. void
  1317. hash_table<Descriptor, Allocator, true>::traverse (Argument argument)
  1318. {
  1319. size_t size = m_size;
  1320. if (elements () * 8 < size && size > 32)
  1321. expand ();
  1322. traverse_noresize <Argument, Callback> (argument);
  1323. }
  1324. /* Slide down the iterator slots until an active entry is found. */
  1325. template<typename Descriptor, template<typename Type> class Allocator>
  1326. void
  1327. hash_table<Descriptor, Allocator, true>::iterator::slide ()
  1328. {
  1329. for ( ; m_slot < m_limit; ++m_slot )
  1330. {
  1331. value_type &x = *m_slot;
  1332. if (!is_empty (x) && !is_deleted (x))
  1333. return;
  1334. }
  1335. m_slot = NULL;
  1336. m_limit = NULL;
  1337. }
  1338. /* Bump the iterator. */
  1339. template<typename Descriptor, template<typename Type> class Allocator>
  1340. inline typename hash_table<Descriptor, Allocator, true>::iterator &
  1341. hash_table<Descriptor, Allocator, true>::iterator::operator ++ ()
  1342. {
  1343. ++m_slot;
  1344. slide ();
  1345. return *this;
  1346. }
  1347. /* Iterate through the elements of hash_table HTAB,
  1348. using hash_table <....>::iterator ITER,
  1349. storing each element in RESULT, which is of type TYPE. */
  1350. #define FOR_EACH_HASH_TABLE_ELEMENT(HTAB, RESULT, TYPE, ITER) \
  1351. for ((ITER) = (HTAB).begin (); \
  1352. (ITER) != (HTAB).end () ? (RESULT = *(ITER) , true) : false; \
  1353. ++(ITER))
  1354. /* ggc walking routines. */
  1355. template<typename E>
  1356. static inline void
  1357. gt_ggc_mx (hash_table<E> *h)
  1358. {
  1359. typedef hash_table<E> table;
  1360. if (!ggc_test_and_set_mark (h->m_entries))
  1361. return;
  1362. for (size_t i = 0; i < h->m_size; i++)
  1363. {
  1364. if (table::is_empty (h->m_entries[i])
  1365. || table::is_deleted (h->m_entries[i]))
  1366. continue;
  1367. E::ggc_mx (h->m_entries[i]);
  1368. }
  1369. }
  1370. template<typename D>
  1371. static inline void
  1372. hashtab_entry_note_pointers (void *obj, void *h, gt_pointer_operator op,
  1373. void *cookie)
  1374. {
  1375. hash_table<D> *map = static_cast<hash_table<D> *> (h);
  1376. gcc_checking_assert (map->m_entries == obj);
  1377. for (size_t i = 0; i < map->m_size; i++)
  1378. {
  1379. typedef hash_table<D> table;
  1380. if (table::is_empty (map->m_entries[i])
  1381. || table::is_deleted (map->m_entries[i]))
  1382. continue;
  1383. D::pch_nx (map->m_entries[i], op, cookie);
  1384. }
  1385. }
  1386. template<typename D>
  1387. static void
  1388. gt_pch_nx (hash_table<D> *h)
  1389. {
  1390. bool success
  1391. = gt_pch_note_object (h->m_entries, h, hashtab_entry_note_pointers<D>);
  1392. gcc_checking_assert (success);
  1393. for (size_t i = 0; i < h->m_size; i++)
  1394. {
  1395. if (hash_table<D>::is_empty (h->m_entries[i])
  1396. || hash_table<D>::is_deleted (h->m_entries[i]))
  1397. continue;
  1398. D::pch_nx (h->m_entries[i]);
  1399. }
  1400. }
  1401. template<typename D>
  1402. static inline void
  1403. gt_pch_nx (hash_table<D> *h, gt_pointer_operator op, void *cookie)
  1404. {
  1405. op (&h->m_entries, cookie);
  1406. }
  1407. template<typename H>
  1408. inline void
  1409. gt_cleare_cache (hash_table<H> *h)
  1410. {
  1411. if (!h)
  1412. return;
  1413. for (typename hash_table<H>::iterator iter = h->begin (); iter != h->end ();
  1414. ++iter)
  1415. H::handle_cache_entry (*iter);
  1416. }
  1417. #endif /* TYPED_HASHTAB_H */