123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565 |
- /* Data references and dependences detectors.
- Copyright (C) 2003-2015 Free Software Foundation, Inc.
- Contributed by Sebastian Pop <pop@cri.ensmp.fr>
- This file is part of GCC.
- GCC is free software; you can redistribute it and/or modify it under
- the terms of the GNU General Public License as published by the Free
- Software Foundation; either version 3, or (at your option) any later
- version.
- GCC is distributed in the hope that it will be useful, but WITHOUT ANY
- WARRANTY; without even the implied warranty of MERCHANTABILITY or
- FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
- for more details.
- You should have received a copy of the GNU General Public License
- along with GCC; see the file COPYING3. If not see
- <http://www.gnu.org/licenses/>. */
- #ifndef GCC_TREE_DATA_REF_H
- #define GCC_TREE_DATA_REF_H
- #include "graphds.h"
- #include "omega.h"
- #include "tree-chrec.h"
- /*
- innermost_loop_behavior describes the evolution of the address of the memory
- reference in the innermost enclosing loop. The address is expressed as
- BASE + STEP * # of iteration, and base is further decomposed as the base
- pointer (BASE_ADDRESS), loop invariant offset (OFFSET) and
- constant offset (INIT). Examples, in loop nest
- for (i = 0; i < 100; i++)
- for (j = 3; j < 100; j++)
- Example 1 Example 2
- data-ref a[j].b[i][j] *(p + x + 16B + 4B * j)
- innermost_loop_behavior
- base_address &a p
- offset i * D_i x
- init 3 * D_j + offsetof (b) 28
- step D_j 4
- */
- struct innermost_loop_behavior
- {
- tree base_address;
- tree offset;
- tree init;
- tree step;
- /* Alignment information. ALIGNED_TO is set to the largest power of two
- that divides OFFSET. */
- tree aligned_to;
- };
- /* Describes the evolutions of indices of the memory reference. The indices
- are indices of the ARRAY_REFs, indexes in artificial dimensions
- added for member selection of records and the operands of MEM_REFs.
- BASE_OBJECT is the part of the reference that is loop-invariant
- (note that this reference does not have to cover the whole object
- being accessed, in which case UNCONSTRAINED_BASE is set; hence it is
- not recommended to use BASE_OBJECT in any code generation).
- For the examples above,
- base_object: a *(p + x + 4B * j_0)
- indices: {j_0, +, 1}_2 {16, +, 4}_2
- 4
- {i_0, +, 1}_1
- {j_0, +, 1}_2
- */
- struct indices
- {
- /* The object. */
- tree base_object;
- /* A list of chrecs. Access functions of the indices. */
- vec<tree> access_fns;
- /* Whether BASE_OBJECT is an access representing the whole object
- or whether the access could not be constrained. */
- bool unconstrained_base;
- };
- struct dr_alias
- {
- /* The alias information that should be used for new pointers to this
- location. */
- struct ptr_info_def *ptr_info;
- };
- /* An integer vector. A vector formally consists of an element of a vector
- space. A vector space is a set that is closed under vector addition
- and scalar multiplication. In this vector space, an element is a list of
- integers. */
- typedef int *lambda_vector;
- /* An integer matrix. A matrix consists of m vectors of length n (IE
- all vectors are the same length). */
- typedef lambda_vector *lambda_matrix;
- struct data_reference
- {
- /* A pointer to the statement that contains this DR. */
- gimple stmt;
- /* A pointer to the memory reference. */
- tree ref;
- /* Auxiliary info specific to a pass. */
- void *aux;
- /* True when the data reference is in RHS of a stmt. */
- bool is_read;
- /* Behavior of the memory reference in the innermost loop. */
- struct innermost_loop_behavior innermost;
- /* Subscripts of this data reference. */
- struct indices indices;
- /* Alias information for the data reference. */
- struct dr_alias alias;
- };
- #define DR_STMT(DR) (DR)->stmt
- #define DR_REF(DR) (DR)->ref
- #define DR_BASE_OBJECT(DR) (DR)->indices.base_object
- #define DR_UNCONSTRAINED_BASE(DR) (DR)->indices.unconstrained_base
- #define DR_ACCESS_FNS(DR) (DR)->indices.access_fns
- #define DR_ACCESS_FN(DR, I) DR_ACCESS_FNS (DR)[I]
- #define DR_NUM_DIMENSIONS(DR) DR_ACCESS_FNS (DR).length ()
- #define DR_IS_READ(DR) (DR)->is_read
- #define DR_IS_WRITE(DR) (!DR_IS_READ (DR))
- #define DR_BASE_ADDRESS(DR) (DR)->innermost.base_address
- #define DR_OFFSET(DR) (DR)->innermost.offset
- #define DR_INIT(DR) (DR)->innermost.init
- #define DR_STEP(DR) (DR)->innermost.step
- #define DR_PTR_INFO(DR) (DR)->alias.ptr_info
- #define DR_ALIGNED_TO(DR) (DR)->innermost.aligned_to
- typedef struct data_reference *data_reference_p;
- enum data_dependence_direction {
- dir_positive,
- dir_negative,
- dir_equal,
- dir_positive_or_negative,
- dir_positive_or_equal,
- dir_negative_or_equal,
- dir_star,
- dir_independent
- };
- /* The description of the grid of iterations that overlap. At most
- two loops are considered at the same time just now, hence at most
- two functions are needed. For each of the functions, we store
- the vector of coefficients, f[0] + x * f[1] + y * f[2] + ...,
- where x, y, ... are variables. */
- #define MAX_DIM 2
- /* Special values of N. */
- #define NO_DEPENDENCE 0
- #define NOT_KNOWN (MAX_DIM + 1)
- #define CF_NONTRIVIAL_P(CF) ((CF)->n != NO_DEPENDENCE && (CF)->n != NOT_KNOWN)
- #define CF_NOT_KNOWN_P(CF) ((CF)->n == NOT_KNOWN)
- #define CF_NO_DEPENDENCE_P(CF) ((CF)->n == NO_DEPENDENCE)
- typedef vec<tree> affine_fn;
- struct conflict_function
- {
- unsigned n;
- affine_fn fns[MAX_DIM];
- };
- /* What is a subscript? Given two array accesses a subscript is the
- tuple composed of the access functions for a given dimension.
- Example: Given A[f1][f2][f3] and B[g1][g2][g3], there are three
- subscripts: (f1, g1), (f2, g2), (f3, g3). These three subscripts
- are stored in the data_dependence_relation structure under the form
- of an array of subscripts. */
- struct subscript
- {
- /* A description of the iterations for which the elements are
- accessed twice. */
- conflict_function *conflicting_iterations_in_a;
- conflict_function *conflicting_iterations_in_b;
- /* This field stores the information about the iteration domain
- validity of the dependence relation. */
- tree last_conflict;
- /* Distance from the iteration that access a conflicting element in
- A to the iteration that access this same conflicting element in
- B. The distance is a tree scalar expression, i.e. a constant or a
- symbolic expression, but certainly not a chrec function. */
- tree distance;
- };
- typedef struct subscript *subscript_p;
- #define SUB_CONFLICTS_IN_A(SUB) SUB->conflicting_iterations_in_a
- #define SUB_CONFLICTS_IN_B(SUB) SUB->conflicting_iterations_in_b
- #define SUB_LAST_CONFLICT(SUB) SUB->last_conflict
- #define SUB_DISTANCE(SUB) SUB->distance
- /* A data_dependence_relation represents a relation between two
- data_references A and B. */
- struct data_dependence_relation
- {
- struct data_reference *a;
- struct data_reference *b;
- /* A "yes/no/maybe" field for the dependence relation:
- - when "ARE_DEPENDENT == NULL_TREE", there exist a dependence
- relation between A and B, and the description of this relation
- is given in the SUBSCRIPTS array,
- - when "ARE_DEPENDENT == chrec_known", there is no dependence and
- SUBSCRIPTS is empty,
- - when "ARE_DEPENDENT == chrec_dont_know", there may be a dependence,
- but the analyzer cannot be more specific. */
- tree are_dependent;
- /* For each subscript in the dependence test, there is an element in
- this array. This is the attribute that labels the edge A->B of
- the data_dependence_relation. */
- vec<subscript_p> subscripts;
- /* The analyzed loop nest. */
- vec<loop_p> loop_nest;
- /* The classic direction vector. */
- vec<lambda_vector> dir_vects;
- /* The classic distance vector. */
- vec<lambda_vector> dist_vects;
- /* An index in loop_nest for the innermost loop that varies for
- this data dependence relation. */
- unsigned inner_loop;
- /* Is the dependence reversed with respect to the lexicographic order? */
- bool reversed_p;
- /* When the dependence relation is affine, it can be represented by
- a distance vector. */
- bool affine_p;
- /* Set to true when the dependence relation is on the same data
- access. */
- bool self_reference_p;
- };
- typedef struct data_dependence_relation *ddr_p;
- #define DDR_A(DDR) DDR->a
- #define DDR_B(DDR) DDR->b
- #define DDR_AFFINE_P(DDR) DDR->affine_p
- #define DDR_ARE_DEPENDENT(DDR) DDR->are_dependent
- #define DDR_SUBSCRIPTS(DDR) DDR->subscripts
- #define DDR_SUBSCRIPT(DDR, I) DDR_SUBSCRIPTS (DDR)[I]
- #define DDR_NUM_SUBSCRIPTS(DDR) DDR_SUBSCRIPTS (DDR).length ()
- #define DDR_LOOP_NEST(DDR) DDR->loop_nest
- /* The size of the direction/distance vectors: the number of loops in
- the loop nest. */
- #define DDR_NB_LOOPS(DDR) (DDR_LOOP_NEST (DDR).length ())
- #define DDR_INNER_LOOP(DDR) DDR->inner_loop
- #define DDR_SELF_REFERENCE(DDR) DDR->self_reference_p
- #define DDR_DIST_VECTS(DDR) ((DDR)->dist_vects)
- #define DDR_DIR_VECTS(DDR) ((DDR)->dir_vects)
- #define DDR_NUM_DIST_VECTS(DDR) \
- (DDR_DIST_VECTS (DDR).length ())
- #define DDR_NUM_DIR_VECTS(DDR) \
- (DDR_DIR_VECTS (DDR).length ())
- #define DDR_DIR_VECT(DDR, I) \
- DDR_DIR_VECTS (DDR)[I]
- #define DDR_DIST_VECT(DDR, I) \
- DDR_DIST_VECTS (DDR)[I]
- #define DDR_REVERSED_P(DDR) DDR->reversed_p
- bool dr_analyze_innermost (struct data_reference *, struct loop *);
- extern bool compute_data_dependences_for_loop (struct loop *, bool,
- vec<loop_p> *,
- vec<data_reference_p> *,
- vec<ddr_p> *);
- extern bool compute_data_dependences_for_bb (basic_block, bool,
- vec<data_reference_p> *,
- vec<ddr_p> *);
- extern void debug_ddrs (vec<ddr_p> );
- extern void dump_data_reference (FILE *, struct data_reference *);
- extern void debug (data_reference &ref);
- extern void debug (data_reference *ptr);
- extern void debug_data_reference (struct data_reference *);
- extern void debug_data_references (vec<data_reference_p> );
- extern void debug (vec<data_reference_p> &ref);
- extern void debug (vec<data_reference_p> *ptr);
- extern void debug_data_dependence_relation (struct data_dependence_relation *);
- extern void dump_data_dependence_relations (FILE *, vec<ddr_p> );
- extern void debug (vec<ddr_p> &ref);
- extern void debug (vec<ddr_p> *ptr);
- extern void debug_data_dependence_relations (vec<ddr_p> );
- extern void free_dependence_relation (struct data_dependence_relation *);
- extern void free_dependence_relations (vec<ddr_p> );
- extern void free_data_ref (data_reference_p);
- extern void free_data_refs (vec<data_reference_p> );
- extern bool find_data_references_in_stmt (struct loop *, gimple,
- vec<data_reference_p> *);
- extern bool graphite_find_data_references_in_stmt (loop_p, loop_p, gimple,
- vec<data_reference_p> *);
- tree find_data_references_in_loop (struct loop *, vec<data_reference_p> *);
- struct data_reference *create_data_ref (loop_p, loop_p, tree, gimple, bool);
- extern bool find_loop_nest (struct loop *, vec<loop_p> *);
- extern struct data_dependence_relation *initialize_data_dependence_relation
- (struct data_reference *, struct data_reference *, vec<loop_p>);
- extern void compute_affine_dependence (struct data_dependence_relation *,
- loop_p);
- extern void compute_self_dependence (struct data_dependence_relation *);
- extern bool compute_all_dependences (vec<data_reference_p> ,
- vec<ddr_p> *,
- vec<loop_p>, bool);
- extern tree find_data_references_in_bb (struct loop *, basic_block,
- vec<data_reference_p> *);
- extern bool dr_may_alias_p (const struct data_reference *,
- const struct data_reference *, bool);
- extern bool dr_equal_offsets_p (struct data_reference *,
- struct data_reference *);
- extern void tree_check_data_deps (void);
- /* Return true when the base objects of data references A and B are
- the same memory object. */
- static inline bool
- same_data_refs_base_objects (data_reference_p a, data_reference_p b)
- {
- return DR_NUM_DIMENSIONS (a) == DR_NUM_DIMENSIONS (b)
- && operand_equal_p (DR_BASE_OBJECT (a), DR_BASE_OBJECT (b), 0);
- }
- /* Return true when the data references A and B are accessing the same
- memory object with the same access functions. */
- static inline bool
- same_data_refs (data_reference_p a, data_reference_p b)
- {
- unsigned int i;
- /* The references are exactly the same. */
- if (operand_equal_p (DR_REF (a), DR_REF (b), 0))
- return true;
- if (!same_data_refs_base_objects (a, b))
- return false;
- for (i = 0; i < DR_NUM_DIMENSIONS (a); i++)
- if (!eq_evolutions_p (DR_ACCESS_FN (a, i), DR_ACCESS_FN (b, i)))
- return false;
- return true;
- }
- /* Return true when the DDR contains two data references that have the
- same access functions. */
- static inline bool
- same_access_functions (const struct data_dependence_relation *ddr)
- {
- unsigned i;
- for (i = 0; i < DDR_NUM_SUBSCRIPTS (ddr); i++)
- if (!eq_evolutions_p (DR_ACCESS_FN (DDR_A (ddr), i),
- DR_ACCESS_FN (DDR_B (ddr), i)))
- return false;
- return true;
- }
- /* Returns true when all the dependences are computable. */
- inline bool
- known_dependences_p (vec<ddr_p> dependence_relations)
- {
- ddr_p ddr;
- unsigned int i;
- FOR_EACH_VEC_ELT (dependence_relations, i, ddr)
- if (DDR_ARE_DEPENDENT (ddr) == chrec_dont_know)
- return false;
- return true;
- }
- /* Returns the dependence level for a vector DIST of size LENGTH.
- LEVEL = 0 means a lexicographic dependence, i.e. a dependence due
- to the sequence of statements, not carried by any loop. */
- static inline unsigned
- dependence_level (lambda_vector dist_vect, int length)
- {
- int i;
- for (i = 0; i < length; i++)
- if (dist_vect[i] != 0)
- return i + 1;
- return 0;
- }
- /* Return the dependence level for the DDR relation. */
- static inline unsigned
- ddr_dependence_level (ddr_p ddr)
- {
- unsigned vector;
- unsigned level = 0;
- if (DDR_DIST_VECTS (ddr).exists ())
- level = dependence_level (DDR_DIST_VECT (ddr, 0), DDR_NB_LOOPS (ddr));
- for (vector = 1; vector < DDR_NUM_DIST_VECTS (ddr); vector++)
- level = MIN (level, dependence_level (DDR_DIST_VECT (ddr, vector),
- DDR_NB_LOOPS (ddr)));
- return level;
- }
- /* Return the index of the variable VAR in the LOOP_NEST array. */
- static inline int
- index_in_loop_nest (int var, vec<loop_p> loop_nest)
- {
- struct loop *loopi;
- int var_index;
- for (var_index = 0; loop_nest.iterate (var_index, &loopi);
- var_index++)
- if (loopi->num == var)
- break;
- return var_index;
- }
- /* Returns true when the data reference DR the form "A[i] = ..."
- with a stride equal to its unit type size. */
- static inline bool
- adjacent_dr_p (struct data_reference *dr)
- {
- /* If this is a bitfield store bail out. */
- if (TREE_CODE (DR_REF (dr)) == COMPONENT_REF
- && DECL_BIT_FIELD (TREE_OPERAND (DR_REF (dr), 1)))
- return false;
- if (!DR_STEP (dr)
- || TREE_CODE (DR_STEP (dr)) != INTEGER_CST)
- return false;
- return tree_int_cst_equal (fold_unary (ABS_EXPR, TREE_TYPE (DR_STEP (dr)),
- DR_STEP (dr)),
- TYPE_SIZE_UNIT (TREE_TYPE (DR_REF (dr))));
- }
- void split_constant_offset (tree , tree *, tree *);
- /* Compute the greatest common divisor of a VECTOR of SIZE numbers. */
- static inline int
- lambda_vector_gcd (lambda_vector vector, int size)
- {
- int i;
- int gcd1 = 0;
- if (size > 0)
- {
- gcd1 = vector[0];
- for (i = 1; i < size; i++)
- gcd1 = gcd (gcd1, vector[i]);
- }
- return gcd1;
- }
- /* Allocate a new vector of given SIZE. */
- static inline lambda_vector
- lambda_vector_new (int size)
- {
- /* ??? We shouldn't abuse the GC allocator here. */
- return ggc_cleared_vec_alloc<int> (size);
- }
- /* Clear out vector VEC1 of length SIZE. */
- static inline void
- lambda_vector_clear (lambda_vector vec1, int size)
- {
- memset (vec1, 0, size * sizeof (*vec1));
- }
- /* Returns true when the vector V is lexicographically positive, in
- other words, when the first nonzero element is positive. */
- static inline bool
- lambda_vector_lexico_pos (lambda_vector v,
- unsigned n)
- {
- unsigned i;
- for (i = 0; i < n; i++)
- {
- if (v[i] == 0)
- continue;
- if (v[i] < 0)
- return false;
- if (v[i] > 0)
- return true;
- }
- return true;
- }
- /* Return true if vector VEC1 of length SIZE is the zero vector. */
- static inline bool
- lambda_vector_zerop (lambda_vector vec1, int size)
- {
- int i;
- for (i = 0; i < size; i++)
- if (vec1[i] != 0)
- return false;
- return true;
- }
- /* Allocate a matrix of M rows x N cols. */
- static inline lambda_matrix
- lambda_matrix_new (int m, int n, struct obstack *lambda_obstack)
- {
- lambda_matrix mat;
- int i;
- mat = XOBNEWVEC (lambda_obstack, lambda_vector, m);
- for (i = 0; i < m; i++)
- mat[i] = XOBNEWVEC (lambda_obstack, int, n);
- return mat;
- }
- #endif /* GCC_TREE_DATA_REF_H */
|