tree.def 64 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382
  1. /* This file contains the definitions and documentation for the
  2. tree codes used in GCC.
  3. Copyright (C) 1987-2015 Free Software Foundation, Inc.
  4. This file is part of GCC.
  5. GCC is free software; you can redistribute it and/or modify it under
  6. the terms of the GNU General Public License as published by the Free
  7. Software Foundation; either version 3, or (at your option) any later
  8. version.
  9. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  10. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  12. for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with GCC; see the file COPYING3. If not see
  15. <http://www.gnu.org/licenses/>. */
  16. /* For tcc_references, tcc_expression, tcc_comparison, tcc_unary,
  17. tcc_binary, and tcc_statement nodes, which use struct tree_exp, the
  18. 4th element is the number of argument slots to allocate. This
  19. determines the size of the tree node object. Other nodes use
  20. different structures, and the size is determined by the tree_union
  21. member structure; the 4th element should be zero. Languages that
  22. define language-specific tcc_exceptional or tcc_constant codes must
  23. define the tree_size langhook to say how big they are.
  24. These tree codes have been sorted so that the macros in tree.h that
  25. check for various tree codes are optimized into range checks. This
  26. gives a measurable performance improvement. When adding a new
  27. code, consider its placement in relation to the other codes.
  28. When adding a new tree code which might appear as GIMPLE_ASSIGN RHS
  29. code, proper handler in chkp_compute_bounds_for_assignment may
  30. be required. */
  31. /* Any erroneous construct is parsed into a node of this type.
  32. This type of node is accepted without complaint in all contexts
  33. by later parsing activities, to avoid multiple error messages
  34. for one error.
  35. No fields in these nodes are used except the TREE_CODE. */
  36. DEFTREECODE (ERROR_MARK, "error_mark", tcc_exceptional, 0)
  37. /* Used to represent a name (such as, in the DECL_NAME of a decl node).
  38. Internally it looks like a STRING_CST node.
  39. There is only one IDENTIFIER_NODE ever made for any particular name.
  40. Use `get_identifier' to get it (or create it, the first time). */
  41. DEFTREECODE (IDENTIFIER_NODE, "identifier_node", tcc_exceptional, 0)
  42. /* Has the TREE_VALUE and TREE_PURPOSE fields. */
  43. /* These nodes are made into lists by chaining through the
  44. TREE_CHAIN field. The elements of the list live in the
  45. TREE_VALUE fields, while TREE_PURPOSE fields are occasionally
  46. used as well to get the effect of Lisp association lists. */
  47. DEFTREECODE (TREE_LIST, "tree_list", tcc_exceptional, 0)
  48. /* These nodes contain an array of tree nodes. */
  49. DEFTREECODE (TREE_VEC, "tree_vec", tcc_exceptional, 0)
  50. /* A symbol binding block. These are arranged in a tree,
  51. where the BLOCK_SUBBLOCKS field contains a chain of subblocks
  52. chained through the BLOCK_CHAIN field.
  53. BLOCK_SUPERCONTEXT points to the parent block.
  54. For a block which represents the outermost scope of a function, it
  55. points to the FUNCTION_DECL node.
  56. BLOCK_VARS points to a chain of decl nodes.
  57. BLOCK_CHAIN points to the next BLOCK at the same level.
  58. BLOCK_ABSTRACT_ORIGIN points to the original (abstract) tree node which
  59. this block is an instance of, or else is NULL to indicate that this
  60. block is not an instance of anything else. When non-NULL, the value
  61. could either point to another BLOCK node or it could point to a
  62. FUNCTION_DECL node (e.g. in the case of a block representing the
  63. outermost scope of a particular inlining of a function).
  64. BLOCK_ABSTRACT is nonzero if the block represents an abstract
  65. instance of a block (i.e. one which is nested within an abstract
  66. instance of an inline function).
  67. TREE_ASM_WRITTEN is nonzero if the block was actually referenced
  68. in the generated assembly. */
  69. DEFTREECODE (BLOCK, "block", tcc_exceptional, 0)
  70. /* Each data type is represented by a tree node whose code is one of
  71. the following: */
  72. /* Each node that represents a data type has a component TYPE_SIZE
  73. containing a tree that is an expression for the size in bits.
  74. The TYPE_MODE contains the machine mode for values of this type.
  75. The TYPE_POINTER_TO field contains a type for a pointer to this type,
  76. or zero if no such has been created yet.
  77. The TYPE_NEXT_VARIANT field is used to chain together types
  78. that are variants made by type modifiers such as "const" and "volatile".
  79. The TYPE_MAIN_VARIANT field, in any member of such a chain,
  80. points to the start of the chain.
  81. The TYPE_NAME field contains info on the name used in the program
  82. for this type (for GDB symbol table output). It is either a
  83. TYPE_DECL node, for types that are typedefs, or an IDENTIFIER_NODE
  84. in the case of structs, unions or enums that are known with a tag,
  85. or zero for types that have no special name.
  86. The TYPE_CONTEXT for any sort of type which could have a name or
  87. which could have named members (e.g. tagged types in C/C++) will
  88. point to the node which represents the scope of the given type, or
  89. will be NULL_TREE if the type has "file scope". For most types, this
  90. will point to a BLOCK node or a FUNCTION_DECL node, but it could also
  91. point to a FUNCTION_TYPE node (for types whose scope is limited to the
  92. formal parameter list of some function type specification) or it
  93. could point to a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE node
  94. (for C++ "member" types).
  95. For non-tagged-types, TYPE_CONTEXT need not be set to anything in
  96. particular, since any type which is of some type category (e.g.
  97. an array type or a function type) which cannot either have a name
  98. itself or have named members doesn't really have a "scope" per se.
  99. The TREE_CHAIN field is used as a forward-references to names for
  100. ENUMERAL_TYPE, RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE nodes;
  101. see below. */
  102. /* The ordering of the following codes is optimized for the checking
  103. macros in tree.h. Changing the order will degrade the speed of the
  104. compiler. OFFSET_TYPE, ENUMERAL_TYPE, BOOLEAN_TYPE, INTEGER_TYPE,
  105. REAL_TYPE, POINTER_TYPE. */
  106. /* An offset is a pointer relative to an object.
  107. The TREE_TYPE field is the type of the object at the offset.
  108. The TYPE_OFFSET_BASETYPE points to the node for the type of object
  109. that the offset is relative to. */
  110. DEFTREECODE (OFFSET_TYPE, "offset_type", tcc_type, 0)
  111. /* C enums. The type node looks just like an INTEGER_TYPE node.
  112. The symbols for the values of the enum type are defined by
  113. CONST_DECL nodes, but the type does not point to them;
  114. however, the TYPE_VALUES is a list in which each element's TREE_PURPOSE
  115. is a name and the TREE_VALUE is the value (an INTEGER_CST node). */
  116. /* A forward reference `enum foo' when no enum named foo is defined yet
  117. has zero (a null pointer) in its TYPE_SIZE. The tag name is in
  118. the TYPE_NAME field. If the type is later defined, the normal
  119. fields are filled in.
  120. RECORD_TYPE, UNION_TYPE, and QUAL_UNION_TYPE forward refs are
  121. treated similarly. */
  122. DEFTREECODE (ENUMERAL_TYPE, "enumeral_type", tcc_type, 0)
  123. /* Boolean type (true or false are the only values). Looks like an
  124. INTEGRAL_TYPE. */
  125. DEFTREECODE (BOOLEAN_TYPE, "boolean_type", tcc_type, 0)
  126. /* Integer types in all languages, including char in C.
  127. Also used for sub-ranges of other discrete types.
  128. Has components TYPE_MIN_VALUE, TYPE_MAX_VALUE (expressions, inclusive)
  129. and TYPE_PRECISION (number of bits used by this type).
  130. In the case of a subrange type in Pascal, the TREE_TYPE
  131. of this will point at the supertype (another INTEGER_TYPE,
  132. or an ENUMERAL_TYPE or BOOLEAN_TYPE).
  133. Otherwise, the TREE_TYPE is zero. */
  134. DEFTREECODE (INTEGER_TYPE, "integer_type", tcc_type, 0)
  135. /* C's float and double. Different floating types are distinguished
  136. by machine mode and by the TYPE_SIZE and the TYPE_PRECISION. */
  137. DEFTREECODE (REAL_TYPE, "real_type", tcc_type, 0)
  138. /* The ordering of the following codes is optimized for the checking
  139. macros in tree.h. Changing the order will degrade the speed of the
  140. compiler. POINTER_TYPE, REFERENCE_TYPE. Note that this range
  141. overlaps the previous range of ordered types. */
  142. /* All pointer-to-x types have code POINTER_TYPE.
  143. The TREE_TYPE points to the node for the type pointed to. */
  144. DEFTREECODE (POINTER_TYPE, "pointer_type", tcc_type, 0)
  145. /* A reference is like a pointer except that it is coerced
  146. automatically to the value it points to. Used in C++. */
  147. DEFTREECODE (REFERENCE_TYPE, "reference_type", tcc_type, 0)
  148. /* The C++ decltype(nullptr) type. */
  149. DEFTREECODE (NULLPTR_TYPE, "nullptr_type", tcc_type, 0)
  150. /* _Fract and _Accum types in Embedded-C. Different fixed-point types
  151. are distinguished by machine mode and by the TYPE_SIZE and the
  152. TYPE_PRECISION. */
  153. DEFTREECODE (FIXED_POINT_TYPE, "fixed_point_type", tcc_type, 0)
  154. /* The ordering of the following codes is optimized for the checking
  155. macros in tree.h. Changing the order will degrade the speed of the
  156. compiler. COMPLEX_TYPE, VECTOR_TYPE, ARRAY_TYPE. */
  157. /* Complex number types. The TREE_TYPE field is the data type
  158. of the real and imaginary parts. It must be of scalar
  159. arithmetic type, not including pointer type. */
  160. DEFTREECODE (COMPLEX_TYPE, "complex_type", tcc_type, 0)
  161. /* Vector types. The TREE_TYPE field is the data type of the vector
  162. elements. The TYPE_PRECISION field is the number of subparts of
  163. the vector. */
  164. DEFTREECODE (VECTOR_TYPE, "vector_type", tcc_type, 0)
  165. /* The ordering of the following codes is optimized for the checking
  166. macros in tree.h. Changing the order will degrade the speed of the
  167. compiler. ARRAY_TYPE, RECORD_TYPE, UNION_TYPE, QUAL_UNION_TYPE.
  168. Note that this range overlaps the previous range. */
  169. /* Types of arrays. Special fields:
  170. TREE_TYPE Type of an array element.
  171. TYPE_DOMAIN Type to index by.
  172. Its range of values specifies the array length.
  173. The field TYPE_POINTER_TO (TREE_TYPE (array_type)) is always nonzero
  174. and holds the type to coerce a value of that array type to in C.
  175. TYPE_STRING_FLAG indicates a string (in contrast to an array of chars)
  176. in languages (such as Chill) that make a distinction. */
  177. /* Array types in C or Pascal */
  178. DEFTREECODE (ARRAY_TYPE, "array_type", tcc_type, 0)
  179. /* Struct in C, or record in Pascal. */
  180. /* Special fields:
  181. TYPE_FIELDS chain of FIELD_DECLs for the fields of the struct,
  182. and VAR_DECLs, TYPE_DECLs and CONST_DECLs for record-scope variables,
  183. types and enumerators.
  184. A few may need to be added for Pascal. */
  185. /* See the comment above, before ENUMERAL_TYPE, for how
  186. forward references to struct tags are handled in C. */
  187. DEFTREECODE (RECORD_TYPE, "record_type", tcc_type, 0)
  188. /* Union in C. Like a struct, except that the offsets of the fields
  189. will all be zero. */
  190. /* See the comment above, before ENUMERAL_TYPE, for how
  191. forward references to union tags are handled in C. */
  192. DEFTREECODE (UNION_TYPE, "union_type", tcc_type, 0) /* C union type */
  193. /* Similar to UNION_TYPE, except that the expressions in DECL_QUALIFIER
  194. in each FIELD_DECL determine what the union contains. The first
  195. field whose DECL_QUALIFIER expression is true is deemed to occupy
  196. the union. */
  197. DEFTREECODE (QUAL_UNION_TYPE, "qual_union_type", tcc_type, 0)
  198. /* The ordering of the following codes is optimized for the checking
  199. macros in tree.h. Changing the order will degrade the speed of the
  200. compiler. VOID_TYPE, FUNCTION_TYPE, METHOD_TYPE. */
  201. /* The void type in C */
  202. DEFTREECODE (VOID_TYPE, "void_type", tcc_type, 0)
  203. /* Type to hold bounds for a pointer.
  204. Has TYPE_PRECISION component to specify number of bits used
  205. by this type. */
  206. DEFTREECODE (POINTER_BOUNDS_TYPE, "pointer_bounds_type", tcc_type, 0)
  207. /* Type of functions. Special fields:
  208. TREE_TYPE type of value returned.
  209. TYPE_ARG_TYPES list of types of arguments expected.
  210. this list is made of TREE_LIST nodes.
  211. Types of "Procedures" in languages where they are different from functions
  212. have code FUNCTION_TYPE also, but then TREE_TYPE is zero or void type. */
  213. DEFTREECODE (FUNCTION_TYPE, "function_type", tcc_type, 0)
  214. /* METHOD_TYPE is the type of a function which takes an extra first
  215. argument for "self", which is not present in the declared argument list.
  216. The TREE_TYPE is the return type of the method. The TYPE_METHOD_BASETYPE
  217. is the type of "self". TYPE_ARG_TYPES is the real argument list, which
  218. includes the hidden argument for "self". */
  219. DEFTREECODE (METHOD_TYPE, "method_type", tcc_type, 0)
  220. /* This is a language-specific kind of type.
  221. Its meaning is defined by the language front end.
  222. layout_type does not know how to lay this out,
  223. so the front-end must do so manually. */
  224. DEFTREECODE (LANG_TYPE, "lang_type", tcc_type, 0)
  225. /* Expressions */
  226. /* First, the constants. */
  227. DEFTREECODE (VOID_CST, "void_cst", tcc_constant, 0)
  228. /* Contents are in an array of HOST_WIDE_INTs.
  229. We often access these constants both in their native precision and
  230. in wider precisions (with the constant being implicitly extended
  231. according to TYPE_SIGN). In each case, the useful part of the array
  232. may be as wide as the precision requires but may be shorter when all
  233. of the upper bits are sign bits. The length of the array when accessed
  234. in the constant's native precision is given by TREE_INT_CST_NUNITS.
  235. The length of the array when accessed in wider precisions is given
  236. by TREE_INT_CST_EXT_NUNITS. Each element can be obtained using
  237. TREE_INT_CST_ELT.
  238. INTEGER_CST nodes can be shared, and therefore should be considered
  239. read only. They should be copied before setting a flag such as
  240. TREE_OVERFLOW. If an INTEGER_CST has TREE_OVERFLOW already set,
  241. it is known to be unique. INTEGER_CST nodes are created for the
  242. integral types, for pointer types and for vector and float types in
  243. some circumstances. */
  244. DEFTREECODE (INTEGER_CST, "integer_cst", tcc_constant, 0)
  245. /* Contents are in TREE_REAL_CST field. */
  246. DEFTREECODE (REAL_CST, "real_cst", tcc_constant, 0)
  247. /* Contents are in TREE_FIXED_CST field. */
  248. DEFTREECODE (FIXED_CST, "fixed_cst", tcc_constant, 0)
  249. /* Contents are in TREE_REALPART and TREE_IMAGPART fields,
  250. whose contents are other constant nodes. */
  251. DEFTREECODE (COMPLEX_CST, "complex_cst", tcc_constant, 0)
  252. /* Contents are in TREE_VECTOR_CST_ELTS field. */
  253. DEFTREECODE (VECTOR_CST, "vector_cst", tcc_constant, 0)
  254. /* Contents are TREE_STRING_LENGTH and the actual contents of the string. */
  255. DEFTREECODE (STRING_CST, "string_cst", tcc_constant, 0)
  256. /* Declarations. All references to names are represented as ..._DECL
  257. nodes. The decls in one binding context are chained through the
  258. TREE_CHAIN field. Each DECL has a DECL_NAME field which contains
  259. an IDENTIFIER_NODE. (Some decls, most often labels, may have zero
  260. as the DECL_NAME). DECL_CONTEXT points to the node representing
  261. the context in which this declaration has its scope. For
  262. FIELD_DECLs, this is the RECORD_TYPE, UNION_TYPE, or
  263. QUAL_UNION_TYPE node that the field is a member of. For VAR_DECL,
  264. PARM_DECL, FUNCTION_DECL, LABEL_DECL, and CONST_DECL nodes, this
  265. points to either the FUNCTION_DECL for the containing function, the
  266. RECORD_TYPE or UNION_TYPE for the containing type, or NULL_TREE or
  267. a TRANSLATION_UNIT_DECL if the given decl has "file scope".
  268. DECL_ABSTRACT_ORIGIN, if non-NULL, points to the original (abstract)
  269. ..._DECL node of which this decl is an (inlined or template expanded)
  270. instance.
  271. The TREE_TYPE field holds the data type of the object, when relevant.
  272. LABEL_DECLs have no data type. For TYPE_DECL, the TREE_TYPE field
  273. contents are the type whose name is being declared.
  274. The DECL_ALIGN, DECL_SIZE,
  275. and DECL_MODE fields exist in decl nodes just as in type nodes.
  276. They are unused in LABEL_DECL, TYPE_DECL and CONST_DECL nodes.
  277. DECL_FIELD_BIT_OFFSET holds an integer number of bits offset for
  278. the location. DECL_VOFFSET holds an expression for a variable
  279. offset; it is to be multiplied by DECL_VOFFSET_UNIT (an integer).
  280. These fields are relevant only in FIELD_DECLs and PARM_DECLs.
  281. DECL_INITIAL holds the value to initialize a variable to,
  282. or the value of a constant. For a function, it holds the body
  283. (a node of type BLOCK representing the function's binding contour
  284. and whose body contains the function's statements.) For a LABEL_DECL
  285. in C, it is a flag, nonzero if the label's definition has been seen.
  286. PARM_DECLs use a special field:
  287. DECL_ARG_TYPE is the type in which the argument is actually
  288. passed, which may be different from its type within the function.
  289. FUNCTION_DECLs use four special fields:
  290. DECL_ARGUMENTS holds a chain of PARM_DECL nodes for the arguments.
  291. DECL_RESULT holds a RESULT_DECL node for the value of a function.
  292. The DECL_RTL field is 0 for a function that returns no value.
  293. (C functions returning void have zero here.)
  294. The TREE_TYPE field is the type in which the result is actually
  295. returned. This is usually the same as the return type of the
  296. FUNCTION_DECL, but it may be a wider integer type because of
  297. promotion.
  298. DECL_FUNCTION_CODE is a code number that is nonzero for
  299. built-in functions. Its value is an enum built_in_function
  300. that says which built-in function it is.
  301. DECL_SOURCE_FILE holds a filename string and DECL_SOURCE_LINE
  302. holds a line number. In some cases these can be the location of
  303. a reference, if no definition has been seen.
  304. DECL_ABSTRACT is nonzero if the decl represents an abstract instance
  305. of a decl (i.e. one which is nested within an abstract instance of a
  306. inline function. */
  307. DEFTREECODE (FUNCTION_DECL, "function_decl", tcc_declaration, 0)
  308. DEFTREECODE (LABEL_DECL, "label_decl", tcc_declaration, 0)
  309. /* The ordering of the following codes is optimized for the checking
  310. macros in tree.h. Changing the order will degrade the speed of the
  311. compiler. FIELD_DECL, VAR_DECL, CONST_DECL, PARM_DECL,
  312. TYPE_DECL. */
  313. DEFTREECODE (FIELD_DECL, "field_decl", tcc_declaration, 0)
  314. DEFTREECODE (VAR_DECL, "var_decl", tcc_declaration, 0)
  315. DEFTREECODE (CONST_DECL, "const_decl", tcc_declaration, 0)
  316. DEFTREECODE (PARM_DECL, "parm_decl", tcc_declaration, 0)
  317. DEFTREECODE (TYPE_DECL, "type_decl", tcc_declaration, 0)
  318. DEFTREECODE (RESULT_DECL, "result_decl", tcc_declaration, 0)
  319. /* A "declaration" of a debug temporary. It should only appear in
  320. DEBUG stmts. */
  321. DEFTREECODE (DEBUG_EXPR_DECL, "debug_expr_decl", tcc_declaration, 0)
  322. /* A namespace declaration. Namespaces appear in DECL_CONTEXT of other
  323. _DECLs, providing a hierarchy of names. */
  324. DEFTREECODE (NAMESPACE_DECL, "namespace_decl", tcc_declaration, 0)
  325. /* A declaration import.
  326. The C++ FE uses this to represent a using-directive; eg:
  327. "using namespace foo".
  328. But it could be used to represent any declaration import construct.
  329. Whenever a declaration import appears in a lexical block, the BLOCK node
  330. representing that lexical block in GIMPLE will contain an IMPORTED_DECL
  331. node, linked via BLOCK_VARS accessor of the said BLOCK.
  332. For a given NODE which code is IMPORTED_DECL,
  333. IMPORTED_DECL_ASSOCIATED_DECL (NODE) accesses the imported declaration. */
  334. DEFTREECODE (IMPORTED_DECL, "imported_decl", tcc_declaration, 0)
  335. /* A namelist declaration.
  336. The Fortran FE uses this to represent a namelist statement, e.g.:
  337. NAMELIST /namelist-group-name/ namelist-group-object-list.
  338. Whenever a declaration import appears in a lexical block, the BLOCK node
  339. representing that lexical block in GIMPLE will contain an NAMELIST_DECL
  340. node, linked via BLOCK_VARS accessor of the said BLOCK.
  341. For a given NODE which code is NAMELIST_DECL,
  342. NAMELIST_DECL_ASSOCIATED_DECL (NODE) accesses the imported declaration. */
  343. DEFTREECODE (NAMELIST_DECL, "namelist_decl", tcc_declaration, 0)
  344. /* A translation unit. This is not technically a declaration, since it
  345. can't be looked up, but it's close enough. */
  346. DEFTREECODE (TRANSLATION_UNIT_DECL, "translation_unit_decl",\
  347. tcc_declaration, 0)
  348. /* References to storage. */
  349. /* The ordering of the following codes is optimized for the classification
  350. in handled_component_p. Keep them in a consecutive group. */
  351. /* Value is structure or union component.
  352. Operand 0 is the structure or union (an expression).
  353. Operand 1 is the field (a node of type FIELD_DECL).
  354. Operand 2, if present, is the value of DECL_FIELD_OFFSET, measured
  355. in units of DECL_OFFSET_ALIGN / BITS_PER_UNIT. */
  356. DEFTREECODE (COMPONENT_REF, "component_ref", tcc_reference, 3)
  357. /* Reference to a group of bits within an object. Similar to COMPONENT_REF
  358. except the position is given explicitly rather than via a FIELD_DECL.
  359. Operand 0 is the structure or union expression;
  360. operand 1 is a tree giving the constant number of bits being referenced;
  361. operand 2 is a tree giving the constant position of the first referenced bit.
  362. The result type width has to match the number of bits referenced.
  363. If the result type is integral, its signedness specifies how it is extended
  364. to its mode width. */
  365. DEFTREECODE (BIT_FIELD_REF, "bit_field_ref", tcc_reference, 3)
  366. /* Array indexing.
  367. Operand 0 is the array; operand 1 is a (single) array index.
  368. Operand 2, if present, is a copy of TYPE_MIN_VALUE of the index.
  369. Operand 3, if present, is the element size, measured in units of
  370. the alignment of the element type. */
  371. DEFTREECODE (ARRAY_REF, "array_ref", tcc_reference, 4)
  372. /* Likewise, except that the result is a range ("slice") of the array. The
  373. starting index of the resulting array is taken from operand 1 and the size
  374. of the range is taken from the type of the expression. */
  375. DEFTREECODE (ARRAY_RANGE_REF, "array_range_ref", tcc_reference, 4)
  376. /* Used only on an operand of complex type, these return
  377. a value of the corresponding component type. */
  378. DEFTREECODE (REALPART_EXPR, "realpart_expr", tcc_reference, 1)
  379. DEFTREECODE (IMAGPART_EXPR, "imagpart_expr", tcc_reference, 1)
  380. /* Represents viewing something of one type as being of a second type.
  381. This corresponds to an "Unchecked Conversion" in Ada and roughly to
  382. the idiom *(type2 *)&X in C. The only operand is the value to be
  383. viewed as being of another type. It is undefined if the type of the
  384. input and of the expression have different sizes.
  385. This code may also be used within the LHS of a MODIFY_EXPR, in which
  386. case no actual data motion may occur. TREE_ADDRESSABLE will be set in
  387. this case and GCC must abort if it could not do the operation without
  388. generating insns. */
  389. DEFTREECODE (VIEW_CONVERT_EXPR, "view_convert_expr", tcc_reference, 1)
  390. /* C unary `*' or Pascal `^'. One operand, an expression for a pointer. */
  391. DEFTREECODE (INDIRECT_REF, "indirect_ref", tcc_reference, 1)
  392. /* Used to represent lookup in a virtual method table which is dependent on
  393. the runtime type of an object. Operands are:
  394. OBJ_TYPE_REF_EXPR: An expression that evaluates the value to use.
  395. OBJ_TYPE_REF_OBJECT: Is the object on whose behalf the lookup is
  396. being performed. Through this the optimizers may be able to statically
  397. determine the dynamic type of the object.
  398. OBJ_TYPE_REF_TOKEN: An integer index to the virtual method table. */
  399. DEFTREECODE (OBJ_TYPE_REF, "obj_type_ref", tcc_expression, 3)
  400. /* Used to represent the brace-enclosed initializers for a structure or an
  401. array. It contains a sequence of component values made out of a VEC of
  402. constructor_elt.
  403. For RECORD_TYPE, UNION_TYPE, or QUAL_UNION_TYPE:
  404. The field INDEX of each constructor_elt is a FIELD_DECL.
  405. For ARRAY_TYPE:
  406. The field INDEX of each constructor_elt is the corresponding index.
  407. If the index is a RANGE_EXPR, it is a short-hand for many nodes,
  408. one for each index in the range. (If the corresponding field VALUE
  409. has side-effects, they are evaluated once for each element. Wrap the
  410. value in a SAVE_EXPR if you want to evaluate side effects only once.)
  411. Components that aren't present are cleared as per the C semantics,
  412. unless the CONSTRUCTOR_NO_CLEARING flag is set, in which case their
  413. value becomes undefined. */
  414. DEFTREECODE (CONSTRUCTOR, "constructor", tcc_exceptional, 0)
  415. /* The expression types are mostly straightforward, with the fourth argument
  416. of DEFTREECODE saying how many operands there are.
  417. Unless otherwise specified, the operands are expressions and the
  418. types of all the operands and the expression must all be the same. */
  419. /* Contains two expressions to compute, one followed by the other.
  420. the first value is ignored. The second one's value is used. The
  421. type of the first expression need not agree with the other types. */
  422. DEFTREECODE (COMPOUND_EXPR, "compound_expr", tcc_expression, 2)
  423. /* Assignment expression. Operand 0 is the what to set; 1, the new value. */
  424. DEFTREECODE (MODIFY_EXPR, "modify_expr", tcc_expression, 2)
  425. /* Initialization expression. Operand 0 is the variable to initialize;
  426. Operand 1 is the initializer. This differs from MODIFY_EXPR in that any
  427. reference to the referent of operand 0 within operand 1 is undefined. */
  428. DEFTREECODE (INIT_EXPR, "init_expr", tcc_expression, 2)
  429. /* For TARGET_EXPR, operand 0 is the target of an initialization,
  430. operand 1 is the initializer for the target, which may be void
  431. if simply expanding it initializes the target.
  432. operand 2 is the cleanup for this node, if any.
  433. operand 3 is the saved initializer after this node has been
  434. expanded once; this is so we can re-expand the tree later. */
  435. DEFTREECODE (TARGET_EXPR, "target_expr", tcc_expression, 4)
  436. /* Conditional expression ( ... ? ... : ... in C).
  437. Operand 0 is the condition.
  438. Operand 1 is the then-value.
  439. Operand 2 is the else-value.
  440. Operand 0 may be of any type.
  441. Operand 1 must have the same type as the entire expression, unless
  442. it unconditionally throws an exception, in which case it should
  443. have VOID_TYPE. The same constraints apply to operand 2. The
  444. condition in operand 0 must be of integral type.
  445. In cfg gimple, if you do not have a selection expression, operands
  446. 1 and 2 are NULL. The operands are then taken from the cfg edges. */
  447. DEFTREECODE (COND_EXPR, "cond_expr", tcc_expression, 3)
  448. /* Vector conditional expression. It is like COND_EXPR, but with
  449. vector operands.
  450. A = VEC_COND_EXPR ( X < Y, B, C)
  451. means
  452. for (i=0; i<N; i++)
  453. A[i] = X[i] < Y[i] ? B[i] : C[i];
  454. */
  455. DEFTREECODE (VEC_COND_EXPR, "vec_cond_expr", tcc_expression, 3)
  456. /* Vector permutation expression. A = VEC_PERM_EXPR<v0, v1, mask> means
  457. N = length(mask)
  458. foreach i in N:
  459. M = mask[i] % (2*N)
  460. A = M < N ? v0[M] : v1[M-N]
  461. V0 and V1 are vectors of the same type. MASK is an integer-typed
  462. vector. The number of MASK elements must be the same with the
  463. number of elements in V0 and V1. The size of the inner type
  464. of the MASK and of the V0 and V1 must be the same.
  465. */
  466. DEFTREECODE (VEC_PERM_EXPR, "vec_perm_expr", tcc_expression, 3)
  467. /* Declare local variables, including making RTL and allocating space.
  468. BIND_EXPR_VARS is a chain of VAR_DECL nodes for the variables.
  469. BIND_EXPR_BODY is the body, the expression to be computed using
  470. the variables. The value of operand 1 becomes that of the BIND_EXPR.
  471. BIND_EXPR_BLOCK is the BLOCK that corresponds to these bindings
  472. for debugging purposes. If this BIND_EXPR is actually expanded,
  473. that sets the TREE_USED flag in the BLOCK.
  474. The BIND_EXPR is not responsible for informing parsers
  475. about these variables. If the body is coming from the input file,
  476. then the code that creates the BIND_EXPR is also responsible for
  477. informing the parser of the variables.
  478. If the BIND_EXPR is ever expanded, its TREE_USED flag is set.
  479. This tells the code for debugging symbol tables not to ignore the BIND_EXPR.
  480. If the BIND_EXPR should be output for debugging but will not be expanded,
  481. set the TREE_USED flag by hand.
  482. In order for the BIND_EXPR to be known at all, the code that creates it
  483. must also install it as a subblock in the tree of BLOCK
  484. nodes for the function. */
  485. DEFTREECODE (BIND_EXPR, "bind_expr", tcc_expression, 3)
  486. /* Function call. CALL_EXPRs are represented by variably-sized expression
  487. nodes. There are at least three fixed operands. Operand 0 is an
  488. INTEGER_CST node containing the total operand count, the number of
  489. arguments plus 3. Operand 1 is the function or NULL, while operand 2 is
  490. is static chain argument, or NULL. The remaining operands are the
  491. arguments to the call. */
  492. DEFTREECODE (CALL_EXPR, "call_expr", tcc_vl_exp, 3)
  493. /* Specify a value to compute along with its corresponding cleanup.
  494. Operand 0 is the cleanup expression.
  495. The cleanup is executed by the first enclosing CLEANUP_POINT_EXPR,
  496. which must exist. This differs from TRY_CATCH_EXPR in that operand 1
  497. is always evaluated when cleanups are run. */
  498. DEFTREECODE (WITH_CLEANUP_EXPR, "with_cleanup_expr", tcc_expression, 1)
  499. /* Specify a cleanup point.
  500. Operand 0 is an expression that may have cleanups. If it does, those
  501. cleanups are executed after the expression is expanded.
  502. Note that if the expression is a reference to storage, it is forced out
  503. of memory before the cleanups are run. This is necessary to handle
  504. cases where the cleanups modify the storage referenced; in the
  505. expression 't.i', if 't' is a struct with an integer member 'i' and a
  506. cleanup which modifies 'i', the value of the expression depends on
  507. whether the cleanup is run before or after 't.i' is evaluated. When
  508. expand_expr is run on 't.i', it returns a MEM. This is not good enough;
  509. the value of 't.i' must be forced out of memory.
  510. As a consequence, the operand of a CLEANUP_POINT_EXPR must not have
  511. BLKmode, because it will not be forced out of memory. */
  512. DEFTREECODE (CLEANUP_POINT_EXPR, "cleanup_point_expr", tcc_expression, 1)
  513. /* The following code is used in languages that have types where some
  514. field in an object of the type contains a value that is used in the
  515. computation of another field's offset or size and/or the size of the
  516. type. The positions and/or sizes of fields can vary from object to
  517. object of the same type or even for one and the same object within
  518. its scope.
  519. Record types with discriminants in Ada or schema types in Pascal are
  520. examples of such types. This mechanism is also used to create "fat
  521. pointers" for unconstrained array types in Ada; the fat pointer is a
  522. structure one of whose fields is a pointer to the actual array type
  523. and the other field is a pointer to a template, which is a structure
  524. containing the bounds of the array. The bounds in the type pointed
  525. to by the first field in the fat pointer refer to the values in the
  526. template.
  527. When you wish to construct such a type you need "self-references"
  528. that allow you to reference the object having this type from the
  529. TYPE node, i.e. without having a variable instantiating this type.
  530. Such a "self-references" is done using a PLACEHOLDER_EXPR. This is
  531. a node that will later be replaced with the object being referenced.
  532. Its type is that of the object and selects which object to use from
  533. a chain of references (see below). No other slots are used in the
  534. PLACEHOLDER_EXPR.
  535. For example, if your type FOO is a RECORD_TYPE with a field BAR,
  536. and you need the value of <variable>.BAR to calculate TYPE_SIZE
  537. (FOO), just substitute <variable> above with a PLACEHOLDER_EXPR
  538. whose TREE_TYPE is FOO. Then construct your COMPONENT_REF with
  539. the PLACEHOLDER_EXPR as the first operand (which has the correct
  540. type). Later, when the size is needed in the program, the back-end
  541. will find this PLACEHOLDER_EXPR and generate code to calculate the
  542. actual size at run-time. In the following, we describe how this
  543. calculation is done.
  544. When we wish to evaluate a size or offset, we check whether it contains a
  545. PLACEHOLDER_EXPR. If it does, we call substitute_placeholder_in_expr
  546. passing both that tree and an expression within which the object may be
  547. found. The latter expression is the object itself in the simple case of
  548. an Ada record with discriminant, but it can be the array in the case of an
  549. unconstrained array.
  550. In the latter case, we need the fat pointer, because the bounds of
  551. the array can only be accessed from it. However, we rely here on the
  552. fact that the expression for the array contains the dereference of
  553. the fat pointer that obtained the array pointer. */
  554. /* Denotes a record to later be substituted before evaluating this expression.
  555. The type of this expression is used to find the record to replace it. */
  556. DEFTREECODE (PLACEHOLDER_EXPR, "placeholder_expr", tcc_exceptional, 0)
  557. /* Simple arithmetic. */
  558. DEFTREECODE (PLUS_EXPR, "plus_expr", tcc_binary, 2)
  559. DEFTREECODE (MINUS_EXPR, "minus_expr", tcc_binary, 2)
  560. DEFTREECODE (MULT_EXPR, "mult_expr", tcc_binary, 2)
  561. /* Pointer addition. The first operand is always a pointer and the
  562. second operand is an integer of type sizetype. */
  563. DEFTREECODE (POINTER_PLUS_EXPR, "pointer_plus_expr", tcc_binary, 2)
  564. /* Highpart multiplication. For an integral type with precision B,
  565. returns bits [2B-1, B] of the full 2*B product. */
  566. DEFTREECODE (MULT_HIGHPART_EXPR, "mult_highpart_expr", tcc_binary, 2)
  567. /* Division for integer result that rounds the quotient toward zero. */
  568. DEFTREECODE (TRUNC_DIV_EXPR, "trunc_div_expr", tcc_binary, 2)
  569. /* Division for integer result that rounds the quotient toward infinity. */
  570. DEFTREECODE (CEIL_DIV_EXPR, "ceil_div_expr", tcc_binary, 2)
  571. /* Division for integer result that rounds toward minus infinity. */
  572. DEFTREECODE (FLOOR_DIV_EXPR, "floor_div_expr", tcc_binary, 2)
  573. /* Division for integer result that rounds toward nearest integer. */
  574. DEFTREECODE (ROUND_DIV_EXPR, "round_div_expr", tcc_binary, 2)
  575. /* Four kinds of remainder that go with the four kinds of division. */
  576. DEFTREECODE (TRUNC_MOD_EXPR, "trunc_mod_expr", tcc_binary, 2)
  577. DEFTREECODE (CEIL_MOD_EXPR, "ceil_mod_expr", tcc_binary, 2)
  578. DEFTREECODE (FLOOR_MOD_EXPR, "floor_mod_expr", tcc_binary, 2)
  579. DEFTREECODE (ROUND_MOD_EXPR, "round_mod_expr", tcc_binary, 2)
  580. /* Division for real result. */
  581. DEFTREECODE (RDIV_EXPR, "rdiv_expr", tcc_binary, 2)
  582. /* Division which is not supposed to need rounding.
  583. Used for pointer subtraction in C. */
  584. DEFTREECODE (EXACT_DIV_EXPR, "exact_div_expr", tcc_binary, 2)
  585. /* Conversion of real to fixed point by truncation. */
  586. DEFTREECODE (FIX_TRUNC_EXPR, "fix_trunc_expr", tcc_unary, 1)
  587. /* Conversion of an integer to a real. */
  588. DEFTREECODE (FLOAT_EXPR, "float_expr", tcc_unary, 1)
  589. /* Unary negation. */
  590. DEFTREECODE (NEGATE_EXPR, "negate_expr", tcc_unary, 1)
  591. /* Minimum and maximum values. When used with floating point, if both
  592. operands are zeros, or if either operand is NaN, then it is unspecified
  593. which of the two operands is returned as the result. */
  594. DEFTREECODE (MIN_EXPR, "min_expr", tcc_binary, 2)
  595. DEFTREECODE (MAX_EXPR, "max_expr", tcc_binary, 2)
  596. /* Represents the absolute value of the operand.
  597. An ABS_EXPR must have either an INTEGER_TYPE or a REAL_TYPE. The
  598. operand of the ABS_EXPR must have the same type. */
  599. DEFTREECODE (ABS_EXPR, "abs_expr", tcc_unary, 1)
  600. /* Shift operations for shift and rotate.
  601. Shift means logical shift if done on an
  602. unsigned type, arithmetic shift if done on a signed type.
  603. The second operand is the number of bits to
  604. shift by; it need not be the same type as the first operand and result.
  605. Note that the result is undefined if the second operand is larger
  606. than or equal to the first operand's type size.
  607. The first operand of a shift can have either an integer or a
  608. (non-integer) fixed-point type. We follow the ISO/IEC TR 18037:2004
  609. semantics for the latter.
  610. Rotates are defined for integer types only. */
  611. DEFTREECODE (LSHIFT_EXPR, "lshift_expr", tcc_binary, 2)
  612. DEFTREECODE (RSHIFT_EXPR, "rshift_expr", tcc_binary, 2)
  613. DEFTREECODE (LROTATE_EXPR, "lrotate_expr", tcc_binary, 2)
  614. DEFTREECODE (RROTATE_EXPR, "rrotate_expr", tcc_binary, 2)
  615. /* Bitwise operations. Operands have same mode as result. */
  616. DEFTREECODE (BIT_IOR_EXPR, "bit_ior_expr", tcc_binary, 2)
  617. DEFTREECODE (BIT_XOR_EXPR, "bit_xor_expr", tcc_binary, 2)
  618. DEFTREECODE (BIT_AND_EXPR, "bit_and_expr", tcc_binary, 2)
  619. DEFTREECODE (BIT_NOT_EXPR, "bit_not_expr", tcc_unary, 1)
  620. /* ANDIF and ORIF allow the second operand not to be computed if the
  621. value of the expression is determined from the first operand. AND,
  622. OR, and XOR always compute the second operand whether its value is
  623. needed or not (for side effects). The operand may have
  624. BOOLEAN_TYPE or INTEGER_TYPE. In either case, the argument will be
  625. either zero or one. For example, a TRUTH_NOT_EXPR will never have
  626. an INTEGER_TYPE VAR_DECL as its argument; instead, a NE_EXPR will be
  627. used to compare the VAR_DECL to zero, thereby obtaining a node with
  628. value zero or one. */
  629. DEFTREECODE (TRUTH_ANDIF_EXPR, "truth_andif_expr", tcc_expression, 2)
  630. DEFTREECODE (TRUTH_ORIF_EXPR, "truth_orif_expr", tcc_expression, 2)
  631. DEFTREECODE (TRUTH_AND_EXPR, "truth_and_expr", tcc_expression, 2)
  632. DEFTREECODE (TRUTH_OR_EXPR, "truth_or_expr", tcc_expression, 2)
  633. DEFTREECODE (TRUTH_XOR_EXPR, "truth_xor_expr", tcc_expression, 2)
  634. DEFTREECODE (TRUTH_NOT_EXPR, "truth_not_expr", tcc_expression, 1)
  635. /* Relational operators.
  636. `EQ_EXPR' and `NE_EXPR' are allowed for any types.
  637. The others are allowed only for integer (or pointer or enumeral)
  638. or real types.
  639. In all cases the operands will have the same type,
  640. and the value is either the type used by the language for booleans
  641. or an integer vector type of the same size and with the same number
  642. of elements as the comparison operands. True for a vector of
  643. comparison results has all bits set while false is equal to zero. */
  644. DEFTREECODE (LT_EXPR, "lt_expr", tcc_comparison, 2)
  645. DEFTREECODE (LE_EXPR, "le_expr", tcc_comparison, 2)
  646. DEFTREECODE (GT_EXPR, "gt_expr", tcc_comparison, 2)
  647. DEFTREECODE (GE_EXPR, "ge_expr", tcc_comparison, 2)
  648. DEFTREECODE (EQ_EXPR, "eq_expr", tcc_comparison, 2)
  649. DEFTREECODE (NE_EXPR, "ne_expr", tcc_comparison, 2)
  650. /* Additional relational operators for floating point unordered. */
  651. DEFTREECODE (UNORDERED_EXPR, "unordered_expr", tcc_comparison, 2)
  652. DEFTREECODE (ORDERED_EXPR, "ordered_expr", tcc_comparison, 2)
  653. /* These are equivalent to unordered or ... */
  654. DEFTREECODE (UNLT_EXPR, "unlt_expr", tcc_comparison, 2)
  655. DEFTREECODE (UNLE_EXPR, "unle_expr", tcc_comparison, 2)
  656. DEFTREECODE (UNGT_EXPR, "ungt_expr", tcc_comparison, 2)
  657. DEFTREECODE (UNGE_EXPR, "unge_expr", tcc_comparison, 2)
  658. DEFTREECODE (UNEQ_EXPR, "uneq_expr", tcc_comparison, 2)
  659. /* This is the reverse of uneq_expr. */
  660. DEFTREECODE (LTGT_EXPR, "ltgt_expr", tcc_comparison, 2)
  661. DEFTREECODE (RANGE_EXPR, "range_expr", tcc_binary, 2)
  662. /* Represents a re-association barrier for floating point expressions
  663. like explicit parenthesis in fortran. */
  664. DEFTREECODE (PAREN_EXPR, "paren_expr", tcc_unary, 1)
  665. /* Represents a conversion of type of a value.
  666. All conversions, including implicit ones, must be
  667. represented by CONVERT_EXPR or NOP_EXPR nodes. */
  668. DEFTREECODE (CONVERT_EXPR, "convert_expr", tcc_unary, 1)
  669. /* Conversion of a pointer value to a pointer to a different
  670. address space. */
  671. DEFTREECODE (ADDR_SPACE_CONVERT_EXPR, "addr_space_convert_expr", tcc_unary, 1)
  672. /* Conversion of a fixed-point value to an integer, a real, or a fixed-point
  673. value. Or conversion of a fixed-point value from an integer, a real, or
  674. a fixed-point value. */
  675. DEFTREECODE (FIXED_CONVERT_EXPR, "fixed_convert_expr", tcc_unary, 1)
  676. /* Represents a conversion expected to require no code to be generated. */
  677. DEFTREECODE (NOP_EXPR, "nop_expr", tcc_unary, 1)
  678. /* Value is same as argument, but guaranteed not an lvalue. */
  679. DEFTREECODE (NON_LVALUE_EXPR, "non_lvalue_expr", tcc_unary, 1)
  680. /* A COMPOUND_LITERAL_EXPR represents a literal that is placed in a DECL. The
  681. COMPOUND_LITERAL_EXPR_DECL_EXPR is the a DECL_EXPR containing the decl
  682. for the anonymous object represented by the COMPOUND_LITERAL;
  683. the DECL_INITIAL of that decl is the CONSTRUCTOR that initializes
  684. the compound literal. */
  685. DEFTREECODE (COMPOUND_LITERAL_EXPR, "compound_literal_expr", tcc_expression, 1)
  686. /* Represents something we computed once and will use multiple times.
  687. First operand is that expression. After it is evaluated once, it
  688. will be replaced by the temporary variable that holds the value. */
  689. DEFTREECODE (SAVE_EXPR, "save_expr", tcc_expression, 1)
  690. /* & in C. Value is the address at which the operand's value resides.
  691. Operand may have any mode. Result mode is Pmode. */
  692. DEFTREECODE (ADDR_EXPR, "addr_expr", tcc_expression, 1)
  693. /* Operand0 is a function constant; result is part N of a function
  694. descriptor of type ptr_mode. */
  695. DEFTREECODE (FDESC_EXPR, "fdesc_expr", tcc_expression, 2)
  696. /* Given two real or integer operands of the same type,
  697. returns a complex value of the corresponding complex type. */
  698. DEFTREECODE (COMPLEX_EXPR, "complex_expr", tcc_binary, 2)
  699. /* Complex conjugate of operand. Used only on complex types. */
  700. DEFTREECODE (CONJ_EXPR, "conj_expr", tcc_unary, 1)
  701. /* Nodes for ++ and -- in C.
  702. The second arg is how much to increment or decrement by.
  703. For a pointer, it would be the size of the object pointed to. */
  704. DEFTREECODE (PREDECREMENT_EXPR, "predecrement_expr", tcc_expression, 2)
  705. DEFTREECODE (PREINCREMENT_EXPR, "preincrement_expr", tcc_expression, 2)
  706. DEFTREECODE (POSTDECREMENT_EXPR, "postdecrement_expr", tcc_expression, 2)
  707. DEFTREECODE (POSTINCREMENT_EXPR, "postincrement_expr", tcc_expression, 2)
  708. /* Used to implement `va_arg'. */
  709. DEFTREECODE (VA_ARG_EXPR, "va_arg_expr", tcc_expression, 1)
  710. /* Evaluate operand 1. If and only if an exception is thrown during
  711. the evaluation of operand 1, evaluate operand 2.
  712. This differs from TRY_FINALLY_EXPR in that operand 2 is not evaluated
  713. on a normal or jump exit, only on an exception. */
  714. DEFTREECODE (TRY_CATCH_EXPR, "try_catch_expr", tcc_statement, 2)
  715. /* Evaluate the first operand.
  716. The second operand is a cleanup expression which is evaluated
  717. on any exit (normal, exception, or jump out) from this expression. */
  718. DEFTREECODE (TRY_FINALLY_EXPR, "try_finally", tcc_statement, 2)
  719. /* These types of expressions have no useful value,
  720. and always have side effects. */
  721. /* Used to represent a local declaration. The operand is DECL_EXPR_DECL. */
  722. DEFTREECODE (DECL_EXPR, "decl_expr", tcc_statement, 1)
  723. /* A label definition, encapsulated as a statement.
  724. Operand 0 is the LABEL_DECL node for the label that appears here.
  725. The type should be void and the value should be ignored. */
  726. DEFTREECODE (LABEL_EXPR, "label_expr", tcc_statement, 1)
  727. /* GOTO. Operand 0 is a LABEL_DECL node or an expression.
  728. The type should be void and the value should be ignored. */
  729. DEFTREECODE (GOTO_EXPR, "goto_expr", tcc_statement, 1)
  730. /* RETURN. Evaluates operand 0, then returns from the current function.
  731. Presumably that operand is an assignment that stores into the
  732. RESULT_DECL that hold the value to be returned.
  733. The operand may be null.
  734. The type should be void and the value should be ignored. */
  735. DEFTREECODE (RETURN_EXPR, "return_expr", tcc_statement, 1)
  736. /* Exit the inner most loop conditionally. Operand 0 is the condition.
  737. The type should be void and the value should be ignored. */
  738. DEFTREECODE (EXIT_EXPR, "exit_expr", tcc_statement, 1)
  739. /* A loop. Operand 0 is the body of the loop.
  740. It must contain an EXIT_EXPR or is an infinite loop.
  741. The type should be void and the value should be ignored. */
  742. DEFTREECODE (LOOP_EXPR, "loop_expr", tcc_statement, 1)
  743. /* Switch expression.
  744. TREE_TYPE is the original type of the condition, before any
  745. language required type conversions. It may be NULL, in which case
  746. the original type and final types are assumed to be the same.
  747. Operand 0 is the expression used to perform the branch,
  748. Operand 1 is the body of the switch, which probably contains
  749. CASE_LABEL_EXPRs. It may also be NULL, in which case operand 2
  750. must not be NULL.
  751. Operand 2 is either NULL_TREE or a TREE_VEC of the CASE_LABEL_EXPRs
  752. of all the cases. */
  753. DEFTREECODE (SWITCH_EXPR, "switch_expr", tcc_statement, 3)
  754. /* Used to represent a case label.
  755. Operand 0 is CASE_LOW. It may be NULL_TREE, in which case the label
  756. is a 'default' label.
  757. Operand 1 is CASE_HIGH. If it is NULL_TREE, the label is a simple
  758. (one-value) case label. If it is non-NULL_TREE, the case is a range.
  759. Operand 2 is CASE_LABEL, which is is the corresponding LABEL_DECL.
  760. Operand 4 is CASE_CHAIN. This operand is only used in tree-cfg.c to
  761. speed up the lookup of case labels which use a particular edge in
  762. the control flow graph. */
  763. DEFTREECODE (CASE_LABEL_EXPR, "case_label_expr", tcc_statement, 4)
  764. /* Used to represent an inline assembly statement. ASM_STRING returns a
  765. STRING_CST for the instruction (e.g., "mov x, y"). ASM_OUTPUTS,
  766. ASM_INPUTS, and ASM_CLOBBERS represent the outputs, inputs, and clobbers
  767. for the statement. ASM_LABELS, if present, indicates various destinations
  768. for the asm; labels cannot be combined with outputs. */
  769. DEFTREECODE (ASM_EXPR, "asm_expr", tcc_statement, 5)
  770. /* Variable references for SSA analysis. New SSA names are created every
  771. time a variable is assigned a new value. The SSA builder uses SSA_NAME
  772. nodes to implement SSA versioning. */
  773. DEFTREECODE (SSA_NAME, "ssa_name", tcc_exceptional, 0)
  774. /* Used to represent a typed exception handler. CATCH_TYPES is the type (or
  775. list of types) handled, and CATCH_BODY is the code for the handler. */
  776. DEFTREECODE (CATCH_EXPR, "catch_expr", tcc_statement, 2)
  777. /* Used to represent an exception specification. EH_FILTER_TYPES is a list
  778. of allowed types, and EH_FILTER_FAILURE is an expression to evaluate on
  779. failure. */
  780. DEFTREECODE (EH_FILTER_EXPR, "eh_filter_expr", tcc_statement, 2)
  781. /* Node used for describing a property that is known at compile
  782. time. */
  783. DEFTREECODE (SCEV_KNOWN, "scev_known", tcc_expression, 0)
  784. /* Node used for describing a property that is not known at compile
  785. time. */
  786. DEFTREECODE (SCEV_NOT_KNOWN, "scev_not_known", tcc_expression, 0)
  787. /* Polynomial chains of recurrences.
  788. Under the form: cr = {CHREC_LEFT (cr), +, CHREC_RIGHT (cr)}. */
  789. DEFTREECODE (POLYNOMIAL_CHREC, "polynomial_chrec", tcc_expression, 3)
  790. /* Used to chain children of container statements together.
  791. Use the interface in tree-iterator.h to access this node. */
  792. DEFTREECODE (STATEMENT_LIST, "statement_list", tcc_exceptional, 0)
  793. /* Predicate assertion. Artificial expression generated by the optimizers
  794. to keep track of predicate values. This expression may only appear on
  795. the RHS of assignments.
  796. Given X = ASSERT_EXPR <Y, EXPR>, the optimizers can infer
  797. two things:
  798. 1- X is a copy of Y.
  799. 2- EXPR is a conditional expression and is known to be true.
  800. Valid and to be expected forms of conditional expressions are
  801. valid GIMPLE conditional expressions (as defined by is_gimple_condexpr)
  802. and conditional expressions with the first operand being a
  803. PLUS_EXPR with a variable possibly wrapped in a NOP_EXPR first
  804. operand and an integer constant second operand.
  805. The type of the expression is the same as Y. */
  806. DEFTREECODE (ASSERT_EXPR, "assert_expr", tcc_expression, 2)
  807. /* Base class information. Holds information about a class as a
  808. baseclass of itself or another class. */
  809. DEFTREECODE (TREE_BINFO, "tree_binfo", tcc_exceptional, 0)
  810. /* Records the size for an expression of variable size type. This is
  811. for use in contexts in which we are accessing the entire object,
  812. such as for a function call, or block copy.
  813. Operand 0 is the real expression.
  814. Operand 1 is the size of the type in the expression. */
  815. DEFTREECODE (WITH_SIZE_EXPR, "with_size_expr", tcc_expression, 2)
  816. /* Extract elements from two input vectors Operand 0 and Operand 1
  817. size VS, according to the offset OFF defined by Operand 2 as
  818. follows:
  819. If OFF > 0, the last VS - OFF elements of vector OP0 are concatenated to
  820. the first OFF elements of the vector OP1.
  821. If OFF == 0, then the returned vector is OP1.
  822. On different targets OFF may take different forms; It can be an address, in
  823. which case its low log2(VS)-1 bits define the offset, or it can be a mask
  824. generated by the builtin targetm.vectorize.mask_for_load_builtin_decl. */
  825. DEFTREECODE (REALIGN_LOAD_EXPR, "realign_load", tcc_expression, 3)
  826. /* Low-level memory addressing. Operands are BASE (address of static or
  827. global variable or register), OFFSET (integer constant),
  828. INDEX (register), STEP (integer constant), INDEX2 (register),
  829. The corresponding address is BASE + STEP * INDEX + INDEX2 + OFFSET.
  830. Only variations and values valid on the target are allowed.
  831. The type of STEP, INDEX and INDEX2 is sizetype.
  832. The type of BASE is a pointer type. If BASE is not an address of
  833. a static or global variable INDEX2 will be NULL.
  834. The type of OFFSET is a pointer type and determines TBAA the same as
  835. the constant offset operand in MEM_REF. */
  836. DEFTREECODE (TARGET_MEM_REF, "target_mem_ref", tcc_reference, 5)
  837. /* Memory addressing. Operands are a pointer and a tree constant integer
  838. byte offset of the pointer type that when dereferenced yields the
  839. type of the base object the pointer points into and which is used for
  840. TBAA purposes.
  841. The type of the MEM_REF is the type the bytes at the memory location
  842. are interpreted as.
  843. MEM_REF <p, c> is equivalent to ((typeof(c))p)->x... where x... is a
  844. chain of component references offsetting p by c. */
  845. DEFTREECODE (MEM_REF, "mem_ref", tcc_reference, 2)
  846. /* OpenACC and OpenMP. As it is exposed in TREE_RANGE_CHECK invocations, do
  847. not change the ordering of these codes. */
  848. /* OpenACC - #pragma acc parallel [clause1 ... clauseN]
  849. Operand 0: OACC_PARALLEL_BODY: Code to be executed in parallel.
  850. Operand 1: OACC_PARALLEL_CLAUSES: List of clauses. */
  851. DEFTREECODE (OACC_PARALLEL, "oacc_parallel", tcc_statement, 2)
  852. /* OpenACC - #pragma acc kernels [clause1 ... clauseN]
  853. Operand 0: OACC_KERNELS_BODY: Sequence of kernels.
  854. Operand 1: OACC_KERNELS_CLAUSES: List of clauses. */
  855. DEFTREECODE (OACC_KERNELS, "oacc_kernels", tcc_statement, 2)
  856. /* OpenACC - #pragma acc data [clause1 ... clauseN]
  857. Operand 0: OACC_DATA_BODY: Data construct body.
  858. Operand 1: OACC_DATA_CLAUSES: List of clauses. */
  859. DEFTREECODE (OACC_DATA, "oacc_data", tcc_statement, 2)
  860. /* OpenACC - #pragma acc host_data [clause1 ... clauseN]
  861. Operand 0: OACC_HOST_DATA_BODY: Host_data construct body.
  862. Operand 1: OACC_HOST_DATA_CLAUSES: List of clauses. */
  863. DEFTREECODE (OACC_HOST_DATA, "oacc_host_data", tcc_statement, 2)
  864. /* OpenMP - #pragma omp parallel [clause1 ... clauseN]
  865. Operand 0: OMP_PARALLEL_BODY: Code to be executed by all threads.
  866. Operand 1: OMP_PARALLEL_CLAUSES: List of clauses. */
  867. DEFTREECODE (OMP_PARALLEL, "omp_parallel", tcc_statement, 2)
  868. /* OpenMP - #pragma omp task [clause1 ... clauseN]
  869. Operand 0: OMP_TASK_BODY: Code to be executed by all threads.
  870. Operand 1: OMP_TASK_CLAUSES: List of clauses. */
  871. DEFTREECODE (OMP_TASK, "omp_task", tcc_statement, 2)
  872. /* OpenMP - #pragma omp for [clause1 ... clauseN]
  873. Operand 0: OMP_FOR_BODY: Loop body.
  874. Operand 1: OMP_FOR_CLAUSES: List of clauses.
  875. Operand 2: OMP_FOR_INIT: Initialization code of the form
  876. VAR = N1.
  877. Operand 3: OMP_FOR_COND: Loop conditional expression of the form
  878. VAR { <, >, <=, >= } N2.
  879. Operand 4: OMP_FOR_INCR: Loop index increment of the form
  880. VAR { +=, -= } INCR.
  881. Operand 5: OMP_FOR_PRE_BODY: Filled by the gimplifier with things
  882. from INIT, COND, and INCR that are technically part of the
  883. OMP_FOR structured block, but are evaluated before the loop
  884. body begins.
  885. VAR must be an integer or pointer variable, which is implicitly thread
  886. private. N1, N2 and INCR are required to be loop invariant integer
  887. expressions that are evaluated without any synchronization.
  888. The evaluation order, frequency of evaluation and side-effects are
  889. unspecified by the standards. */
  890. DEFTREECODE (OMP_FOR, "omp_for", tcc_statement, 6)
  891. /* OpenMP - #pragma omp simd [clause1 ... clauseN]
  892. Operands like for OMP_FOR. */
  893. DEFTREECODE (OMP_SIMD, "omp_simd", tcc_statement, 6)
  894. /* Cilk Plus - #pragma simd [clause1 ... clauseN]
  895. Operands like for OMP_FOR. */
  896. DEFTREECODE (CILK_SIMD, "cilk_simd", tcc_statement, 6)
  897. /* Cilk Plus - _Cilk_for (..)
  898. Operands like for OMP_FOR. */
  899. DEFTREECODE (CILK_FOR, "cilk_for", tcc_statement, 6)
  900. /* OpenMP - #pragma omp distribute [clause1 ... clauseN]
  901. Operands like for OMP_FOR. */
  902. DEFTREECODE (OMP_DISTRIBUTE, "omp_distribute", tcc_statement, 6)
  903. /* OpenMP - #pragma acc loop [clause1 ... clauseN]
  904. Operands like for OMP_FOR. */
  905. DEFTREECODE (OACC_LOOP, "oacc_loop", tcc_statement, 6)
  906. /* OpenMP - #pragma omp teams [clause1 ... clauseN]
  907. Operand 0: OMP_TEAMS_BODY: Teams body.
  908. Operand 1: OMP_TEAMS_CLAUSES: List of clauses. */
  909. DEFTREECODE (OMP_TEAMS, "omp_teams", tcc_statement, 2)
  910. /* OpenMP - #pragma omp target data [clause1 ... clauseN]
  911. Operand 0: OMP_TARGET_DATA_BODY: Target data construct body.
  912. Operand 1: OMP_TARGET_DATA_CLAUSES: List of clauses. */
  913. DEFTREECODE (OMP_TARGET_DATA, "omp_target_data", tcc_statement, 2)
  914. /* OpenMP - #pragma omp target [clause1 ... clauseN]
  915. Operand 0: OMP_TARGET_BODY: Target construct body.
  916. Operand 1: OMP_TARGET_CLAUSES: List of clauses. */
  917. DEFTREECODE (OMP_TARGET, "omp_target", tcc_statement, 2)
  918. /* OpenMP - #pragma omp sections [clause1 ... clauseN]
  919. Operand 0: OMP_SECTIONS_BODY: Sections body.
  920. Operand 1: OMP_SECTIONS_CLAUSES: List of clauses. */
  921. DEFTREECODE (OMP_SECTIONS, "omp_sections", tcc_statement, 2)
  922. /* OpenMP - #pragma omp single
  923. Operand 0: OMP_SINGLE_BODY: Single section body.
  924. Operand 1: OMP_SINGLE_CLAUSES: List of clauses. */
  925. DEFTREECODE (OMP_SINGLE, "omp_single", tcc_statement, 2)
  926. /* OpenMP - #pragma omp section
  927. Operand 0: OMP_SECTION_BODY: Section body. */
  928. DEFTREECODE (OMP_SECTION, "omp_section", tcc_statement, 1)
  929. /* OpenMP - #pragma omp master
  930. Operand 0: OMP_MASTER_BODY: Master section body. */
  931. DEFTREECODE (OMP_MASTER, "omp_master", tcc_statement, 1)
  932. /* OpenMP - #pragma omp taskgroup
  933. Operand 0: OMP_TASKGROUP_BODY: Taskgroup body. */
  934. DEFTREECODE (OMP_TASKGROUP, "omp_taskgroup", tcc_statement, 1)
  935. /* OpenMP - #pragma omp ordered
  936. Operand 0: OMP_ORDERED_BODY: Master section body. */
  937. DEFTREECODE (OMP_ORDERED, "omp_ordered", tcc_statement, 1)
  938. /* OpenMP - #pragma omp critical [name]
  939. Operand 0: OMP_CRITICAL_BODY: Critical section body.
  940. Operand 1: OMP_CRITICAL_NAME: Identifier for critical section. */
  941. DEFTREECODE (OMP_CRITICAL, "omp_critical", tcc_statement, 2)
  942. /* OpenACC - #pragma acc cache (variable1 ... variableN)
  943. Operand 0: OACC_CACHE_CLAUSES: List of variables (transformed into
  944. OMP_CLAUSE__CACHE_ clauses). */
  945. DEFTREECODE (OACC_CACHE, "oacc_cache", tcc_statement, 1)
  946. /* OpenACC - #pragma acc declare [clause1 ... clauseN]
  947. Operand 0: OACC_DECLARE_CLAUSES: List of clauses. */
  948. DEFTREECODE (OACC_DECLARE, "oacc_declare", tcc_statement, 1)
  949. /* OpenACC - #pragma acc enter data [clause1 ... clauseN]
  950. Operand 0: OACC_ENTER_DATA_CLAUSES: List of clauses. */
  951. DEFTREECODE (OACC_ENTER_DATA, "oacc_enter_data", tcc_statement, 1)
  952. /* OpenACC - #pragma acc exit data [clause1 ... clauseN]
  953. Operand 0: OACC_EXIT_DATA_CLAUSES: List of clauses. */
  954. DEFTREECODE (OACC_EXIT_DATA, "oacc_exit_data", tcc_statement, 1)
  955. /* OpenACC - #pragma acc update [clause1 ... clauseN]
  956. Operand 0: OACC_UPDATE_CLAUSES: List of clauses. */
  957. DEFTREECODE (OACC_UPDATE, "oacc_update", tcc_statement, 1)
  958. /* OpenMP - #pragma omp target update [clause1 ... clauseN]
  959. Operand 0: OMP_TARGET_UPDATE_CLAUSES: List of clauses. */
  960. DEFTREECODE (OMP_TARGET_UPDATE, "omp_target_update", tcc_statement, 1)
  961. /* OMP_ATOMIC through OMP_ATOMIC_CAPTURE_NEW must be consecutive,
  962. or OMP_ATOMIC_SEQ_CST needs adjusting. */
  963. /* OpenMP - #pragma omp atomic
  964. Operand 0: The address at which the atomic operation is to be performed.
  965. This address should be stabilized with save_expr.
  966. Operand 1: The expression to evaluate. When the old value of the object
  967. at the address is used in the expression, it should appear as if
  968. build_fold_indirect_ref of the address. */
  969. DEFTREECODE (OMP_ATOMIC, "omp_atomic", tcc_statement, 2)
  970. /* OpenMP - #pragma omp atomic read
  971. Operand 0: The address at which the atomic operation is to be performed.
  972. This address should be stabilized with save_expr. */
  973. DEFTREECODE (OMP_ATOMIC_READ, "omp_atomic_read", tcc_statement, 1)
  974. /* OpenMP - #pragma omp atomic capture
  975. Operand 0: The address at which the atomic operation is to be performed.
  976. This address should be stabilized with save_expr.
  977. Operand 1: The expression to evaluate. When the old value of the object
  978. at the address is used in the expression, it should appear as if
  979. build_fold_indirect_ref of the address.
  980. OMP_ATOMIC_CAPTURE_OLD returns the old memory content,
  981. OMP_ATOMIC_CAPTURE_NEW the new value. */
  982. DEFTREECODE (OMP_ATOMIC_CAPTURE_OLD, "omp_atomic_capture_old", tcc_statement, 2)
  983. DEFTREECODE (OMP_ATOMIC_CAPTURE_NEW, "omp_atomic_capture_new", tcc_statement, 2)
  984. /* OpenMP clauses. */
  985. DEFTREECODE (OMP_CLAUSE, "omp_clause", tcc_exceptional, 0)
  986. /* TRANSACTION_EXPR tree code.
  987. Operand 0: BODY: contains body of the transaction. */
  988. DEFTREECODE (TRANSACTION_EXPR, "transaction_expr", tcc_expression, 1)
  989. /* Reduction operations.
  990. Operations that take a vector of elements and "reduce" it to a scalar
  991. result (e.g. summing the elements of the vector, finding the minimum over
  992. the vector elements, etc).
  993. Operand 0 is a vector.
  994. The expression returns a scalar, with type the same as the elements of the
  995. vector, holding the result of the reduction of all elements of the operand.
  996. */
  997. DEFTREECODE (REDUC_MAX_EXPR, "reduc_max_expr", tcc_unary, 1)
  998. DEFTREECODE (REDUC_MIN_EXPR, "reduc_min_expr", tcc_unary, 1)
  999. DEFTREECODE (REDUC_PLUS_EXPR, "reduc_plus_expr", tcc_unary, 1)
  1000. /* Widening dot-product.
  1001. The first two arguments are of type t1.
  1002. The third argument and the result are of type t2, such that t2 is at least
  1003. twice the size of t1. DOT_PROD_EXPR(arg1,arg2,arg3) is equivalent to:
  1004. tmp = WIDEN_MULT_EXPR(arg1, arg2);
  1005. arg3 = PLUS_EXPR (tmp, arg3);
  1006. or:
  1007. tmp = WIDEN_MULT_EXPR(arg1, arg2);
  1008. arg3 = WIDEN_SUM_EXPR (tmp, arg3); */
  1009. DEFTREECODE (DOT_PROD_EXPR, "dot_prod_expr", tcc_expression, 3)
  1010. /* Widening summation.
  1011. The first argument is of type t1.
  1012. The second argument is of type t2, such that t2 is at least twice
  1013. the size of t1. The type of the entire expression is also t2.
  1014. WIDEN_SUM_EXPR is equivalent to first widening (promoting)
  1015. the first argument from type t1 to type t2, and then summing it
  1016. with the second argument. */
  1017. DEFTREECODE (WIDEN_SUM_EXPR, "widen_sum_expr", tcc_binary, 2)
  1018. /* Widening sad (sum of absolute differences).
  1019. The first two arguments are of type t1 which should be integer.
  1020. The third argument and the result are of type t2, such that t2 is at least
  1021. twice the size of t1. Like DOT_PROD_EXPR, SAD_EXPR (arg1,arg2,arg3) is
  1022. equivalent to (note we don't have WIDEN_MINUS_EXPR now, but we assume its
  1023. behavior is similar to WIDEN_SUM_EXPR):
  1024. tmp = WIDEN_MINUS_EXPR (arg1, arg2)
  1025. tmp2 = ABS_EXPR (tmp)
  1026. arg3 = PLUS_EXPR (tmp2, arg3)
  1027. or:
  1028. tmp = WIDEN_MINUS_EXPR (arg1, arg2)
  1029. tmp2 = ABS_EXPR (tmp)
  1030. arg3 = WIDEN_SUM_EXPR (tmp2, arg3)
  1031. */
  1032. DEFTREECODE (SAD_EXPR, "sad_expr", tcc_expression, 3)
  1033. /* Widening multiplication.
  1034. The two arguments are of type t1.
  1035. The result is of type t2, such that t2 is at least twice
  1036. the size of t1. WIDEN_MULT_EXPR is equivalent to first widening (promoting)
  1037. the arguments from type t1 to type t2, and then multiplying them. */
  1038. DEFTREECODE (WIDEN_MULT_EXPR, "widen_mult_expr", tcc_binary, 2)
  1039. /* Widening multiply-accumulate.
  1040. The first two arguments are of type t1.
  1041. The third argument and the result are of type t2, such as t2 is at least
  1042. twice the size of t1. t1 and t2 must be integral or fixed-point types.
  1043. The expression is equivalent to a WIDEN_MULT_EXPR operation
  1044. of the first two operands followed by an add or subtract of the third
  1045. operand. */
  1046. DEFTREECODE (WIDEN_MULT_PLUS_EXPR, "widen_mult_plus_expr", tcc_expression, 3)
  1047. /* This is like the above, except in the final expression the multiply result
  1048. is subtracted from t3. */
  1049. DEFTREECODE (WIDEN_MULT_MINUS_EXPR, "widen_mult_minus_expr", tcc_expression, 3)
  1050. /* Widening shift left.
  1051. The first operand is of type t1.
  1052. The second operand is the number of bits to shift by; it need not be the
  1053. same type as the first operand and result.
  1054. Note that the result is undefined if the second operand is larger
  1055. than or equal to the first operand's type size.
  1056. The type of the entire expression is t2, such that t2 is at least twice
  1057. the size of t1.
  1058. WIDEN_LSHIFT_EXPR is equivalent to first widening (promoting)
  1059. the first argument from type t1 to type t2, and then shifting it
  1060. by the second argument. */
  1061. DEFTREECODE (WIDEN_LSHIFT_EXPR, "widen_lshift_expr", tcc_binary, 2)
  1062. /* Fused multiply-add.
  1063. All operands and the result are of the same type. No intermediate
  1064. rounding is performed after multiplying operand one with operand two
  1065. before adding operand three. */
  1066. DEFTREECODE (FMA_EXPR, "fma_expr", tcc_expression, 3)
  1067. /* Widening vector multiplication.
  1068. The two operands are vectors with N elements of size S. Multiplying the
  1069. elements of the two vectors will result in N products of size 2*S.
  1070. VEC_WIDEN_MULT_HI_EXPR computes the N/2 high products.
  1071. VEC_WIDEN_MULT_LO_EXPR computes the N/2 low products. */
  1072. DEFTREECODE (VEC_WIDEN_MULT_HI_EXPR, "widen_mult_hi_expr", tcc_binary, 2)
  1073. DEFTREECODE (VEC_WIDEN_MULT_LO_EXPR, "widen_mult_lo_expr", tcc_binary, 2)
  1074. /* Similarly, but return the even or odd N/2 products. */
  1075. DEFTREECODE (VEC_WIDEN_MULT_EVEN_EXPR, "widen_mult_even_expr", tcc_binary, 2)
  1076. DEFTREECODE (VEC_WIDEN_MULT_ODD_EXPR, "widen_mult_odd_expr", tcc_binary, 2)
  1077. /* Unpack (extract and promote/widen) the high/low elements of the input
  1078. vector into the output vector. The input vector has twice as many
  1079. elements as the output vector, that are half the size of the elements
  1080. of the output vector. This is used to support type promotion. */
  1081. DEFTREECODE (VEC_UNPACK_HI_EXPR, "vec_unpack_hi_expr", tcc_unary, 1)
  1082. DEFTREECODE (VEC_UNPACK_LO_EXPR, "vec_unpack_lo_expr", tcc_unary, 1)
  1083. /* Unpack (extract) the high/low elements of the input vector, convert
  1084. fixed point values to floating point and widen elements into the
  1085. output vector. The input vector has twice as many elements as the output
  1086. vector, that are half the size of the elements of the output vector. */
  1087. DEFTREECODE (VEC_UNPACK_FLOAT_HI_EXPR, "vec_unpack_float_hi_expr", tcc_unary, 1)
  1088. DEFTREECODE (VEC_UNPACK_FLOAT_LO_EXPR, "vec_unpack_float_lo_expr", tcc_unary, 1)
  1089. /* Pack (demote/narrow and merge) the elements of the two input vectors
  1090. into the output vector using truncation/saturation.
  1091. The elements of the input vectors are twice the size of the elements of the
  1092. output vector. This is used to support type demotion. */
  1093. DEFTREECODE (VEC_PACK_TRUNC_EXPR, "vec_pack_trunc_expr", tcc_binary, 2)
  1094. DEFTREECODE (VEC_PACK_SAT_EXPR, "vec_pack_sat_expr", tcc_binary, 2)
  1095. /* Convert floating point values of the two input vectors to integer
  1096. and pack (narrow and merge) the elements into the output vector. The
  1097. elements of the input vector are twice the size of the elements of
  1098. the output vector. */
  1099. DEFTREECODE (VEC_PACK_FIX_TRUNC_EXPR, "vec_pack_fix_trunc_expr", tcc_binary, 2)
  1100. /* Widening vector shift left in bits.
  1101. Operand 0 is a vector to be shifted with N elements of size S.
  1102. Operand 1 is an integer shift amount in bits.
  1103. The result of the operation is N elements of size 2*S.
  1104. VEC_WIDEN_LSHIFT_HI_EXPR computes the N/2 high results.
  1105. VEC_WIDEN_LSHIFT_LO_EXPR computes the N/2 low results.
  1106. */
  1107. DEFTREECODE (VEC_WIDEN_LSHIFT_HI_EXPR, "widen_lshift_hi_expr", tcc_binary, 2)
  1108. DEFTREECODE (VEC_WIDEN_LSHIFT_LO_EXPR, "widen_lshift_lo_expr", tcc_binary, 2)
  1109. /* PREDICT_EXPR. Specify hint for branch prediction. The
  1110. PREDICT_EXPR_PREDICTOR specify predictor and PREDICT_EXPR_OUTCOME the
  1111. outcome (0 for not taken and 1 for taken). Once the profile is guessed
  1112. all conditional branches leading to execution paths executing the
  1113. PREDICT_EXPR will get predicted by the specified predictor. */
  1114. DEFTREECODE (PREDICT_EXPR, "predict_expr", tcc_expression, 1)
  1115. /* OPTIMIZATION_NODE. Node to store the optimization options. */
  1116. DEFTREECODE (OPTIMIZATION_NODE, "optimization_node", tcc_exceptional, 0)
  1117. /* TARGET_OPTION_NODE. Node to store the target specific options. */
  1118. DEFTREECODE (TARGET_OPTION_NODE, "target_option_node", tcc_exceptional, 0)
  1119. /* ANNOTATE_EXPR.
  1120. Operand 0 is the expression to be annotated.
  1121. Operand 1 is the annotation kind. */
  1122. DEFTREECODE (ANNOTATE_EXPR, "annotate_expr", tcc_expression, 2)
  1123. /* Cilk spawn statement
  1124. Operand 0 is the CALL_EXPR. */
  1125. DEFTREECODE (CILK_SPAWN_STMT, "cilk_spawn_stmt", tcc_statement, 1)
  1126. /* Cilk Sync statement: Does not have any operands. */
  1127. DEFTREECODE (CILK_SYNC_STMT, "cilk_sync_stmt", tcc_statement, 0)
  1128. /*
  1129. Local variables:
  1130. mode:c
  1131. End:
  1132. */