vec.h 48 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731
  1. /* Vector API for GNU compiler.
  2. Copyright (C) 2004-2015 Free Software Foundation, Inc.
  3. Contributed by Nathan Sidwell <nathan@codesourcery.com>
  4. Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
  5. This file is part of GCC.
  6. GCC is free software; you can redistribute it and/or modify it under
  7. the terms of the GNU General Public License as published by the Free
  8. Software Foundation; either version 3, or (at your option) any later
  9. version.
  10. GCC is distributed in the hope that it will be useful, but WITHOUT ANY
  11. WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12. FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
  13. for more details.
  14. You should have received a copy of the GNU General Public License
  15. along with GCC; see the file COPYING3. If not see
  16. <http://www.gnu.org/licenses/>. */
  17. #ifndef GCC_VEC_H
  18. #define GCC_VEC_H
  19. /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
  20. support because the headers generated by gengtype are still not
  21. present. In particular, the header file gtype-desc.h is missing,
  22. so compilation may fail if we try to include ggc.h.
  23. Since we use some of those declarations, we need to provide them
  24. (even if the GC-based templates are not used). This is not a
  25. problem because the code that runs before gengtype is built will
  26. never need to use GC vectors. But it does force us to declare
  27. these functions more than once. */
  28. #ifdef GENERATOR_FILE
  29. #define VEC_GC_ENABLED 0
  30. #else
  31. #define VEC_GC_ENABLED 1
  32. #endif // GENERATOR_FILE
  33. #include "statistics.h" // For CXX_MEM_STAT_INFO.
  34. #if VEC_GC_ENABLED
  35. #include "ggc.h"
  36. #else
  37. # ifndef GCC_GGC_H
  38. /* Even if we think that GC is not enabled, the test that sets it is
  39. weak. There are files compiled with -DGENERATOR_FILE that already
  40. include ggc.h. We only need to provide these definitions if ggc.h
  41. has not been included. Sigh. */
  42. extern void ggc_free (void *);
  43. extern size_t ggc_round_alloc_size (size_t requested_size);
  44. extern void *ggc_realloc (void *, size_t CXX_MEM_STAT_INFO);
  45. # endif // GCC_GGC_H
  46. #endif // VEC_GC_ENABLED
  47. /* Templated vector type and associated interfaces.
  48. The interface functions are typesafe and use inline functions,
  49. sometimes backed by out-of-line generic functions. The vectors are
  50. designed to interoperate with the GTY machinery.
  51. There are both 'index' and 'iterate' accessors. The index accessor
  52. is implemented by operator[]. The iterator returns a boolean
  53. iteration condition and updates the iteration variable passed by
  54. reference. Because the iterator will be inlined, the address-of
  55. can be optimized away.
  56. Each operation that increases the number of active elements is
  57. available in 'quick' and 'safe' variants. The former presumes that
  58. there is sufficient allocated space for the operation to succeed
  59. (it dies if there is not). The latter will reallocate the
  60. vector, if needed. Reallocation causes an exponential increase in
  61. vector size. If you know you will be adding N elements, it would
  62. be more efficient to use the reserve operation before adding the
  63. elements with the 'quick' operation. This will ensure there are at
  64. least as many elements as you ask for, it will exponentially
  65. increase if there are too few spare slots. If you want reserve a
  66. specific number of slots, but do not want the exponential increase
  67. (for instance, you know this is the last allocation), use the
  68. reserve_exact operation. You can also create a vector of a
  69. specific size from the get go.
  70. You should prefer the push and pop operations, as they append and
  71. remove from the end of the vector. If you need to remove several
  72. items in one go, use the truncate operation. The insert and remove
  73. operations allow you to change elements in the middle of the
  74. vector. There are two remove operations, one which preserves the
  75. element ordering 'ordered_remove', and one which does not
  76. 'unordered_remove'. The latter function copies the end element
  77. into the removed slot, rather than invoke a memmove operation. The
  78. 'lower_bound' function will determine where to place an item in the
  79. array using insert that will maintain sorted order.
  80. Vectors are template types with three arguments: the type of the
  81. elements in the vector, the allocation strategy, and the physical
  82. layout to use
  83. Four allocation strategies are supported:
  84. - Heap: allocation is done using malloc/free. This is the
  85. default allocation strategy.
  86. - GC: allocation is done using ggc_alloc/ggc_free.
  87. - GC atomic: same as GC with the exception that the elements
  88. themselves are assumed to be of an atomic type that does
  89. not need to be garbage collected. This means that marking
  90. routines do not need to traverse the array marking the
  91. individual elements. This increases the performance of
  92. GC activities.
  93. Two physical layouts are supported:
  94. - Embedded: The vector is structured using the trailing array
  95. idiom. The last member of the structure is an array of size
  96. 1. When the vector is initially allocated, a single memory
  97. block is created to hold the vector's control data and the
  98. array of elements. These vectors cannot grow without
  99. reallocation (see discussion on embeddable vectors below).
  100. - Space efficient: The vector is structured as a pointer to an
  101. embedded vector. This is the default layout. It means that
  102. vectors occupy a single word of storage before initial
  103. allocation. Vectors are allowed to grow (the internal
  104. pointer is reallocated but the main vector instance does not
  105. need to relocate).
  106. The type, allocation and layout are specified when the vector is
  107. declared.
  108. If you need to directly manipulate a vector, then the 'address'
  109. accessor will return the address of the start of the vector. Also
  110. the 'space' predicate will tell you whether there is spare capacity
  111. in the vector. You will not normally need to use these two functions.
  112. Notes on the different layout strategies
  113. * Embeddable vectors (vec<T, A, vl_embed>)
  114. These vectors are suitable to be embedded in other data
  115. structures so that they can be pre-allocated in a contiguous
  116. memory block.
  117. Embeddable vectors are implemented using the trailing array
  118. idiom, thus they are not resizeable without changing the address
  119. of the vector object itself. This means you cannot have
  120. variables or fields of embeddable vector type -- always use a
  121. pointer to a vector. The one exception is the final field of a
  122. structure, which could be a vector type.
  123. You will have to use the embedded_size & embedded_init calls to
  124. create such objects, and they will not be resizeable (so the
  125. 'safe' allocation variants are not available).
  126. Properties of embeddable vectors:
  127. - The whole vector and control data are allocated in a single
  128. contiguous block. It uses the trailing-vector idiom, so
  129. allocation must reserve enough space for all the elements
  130. in the vector plus its control data.
  131. - The vector cannot be re-allocated.
  132. - The vector cannot grow nor shrink.
  133. - No indirections needed for access/manipulation.
  134. - It requires 2 words of storage (prior to vector allocation).
  135. * Space efficient vector (vec<T, A, vl_ptr>)
  136. These vectors can grow dynamically and are allocated together
  137. with their control data. They are suited to be included in data
  138. structures. Prior to initial allocation, they only take a single
  139. word of storage.
  140. These vectors are implemented as a pointer to embeddable vectors.
  141. The semantics allow for this pointer to be NULL to represent
  142. empty vectors. This way, empty vectors occupy minimal space in
  143. the structure containing them.
  144. Properties:
  145. - The whole vector and control data are allocated in a single
  146. contiguous block.
  147. - The whole vector may be re-allocated.
  148. - Vector data may grow and shrink.
  149. - Access and manipulation requires a pointer test and
  150. indirection.
  151. - It requires 1 word of storage (prior to vector allocation).
  152. An example of their use would be,
  153. struct my_struct {
  154. // A space-efficient vector of tree pointers in GC memory.
  155. vec<tree, va_gc, vl_ptr> v;
  156. };
  157. struct my_struct *s;
  158. if (s->v.length ()) { we have some contents }
  159. s->v.safe_push (decl); // append some decl onto the end
  160. for (ix = 0; s->v.iterate (ix, &elt); ix++)
  161. { do something with elt }
  162. */
  163. /* Support function for statistics. */
  164. extern void dump_vec_loc_statistics (void);
  165. /* Control data for vectors. This contains the number of allocated
  166. and used slots inside a vector. */
  167. struct vec_prefix
  168. {
  169. /* FIXME - These fields should be private, but we need to cater to
  170. compilers that have stricter notions of PODness for types. */
  171. /* Memory allocation support routines in vec.c. */
  172. void register_overhead (size_t, const char *, int, const char *);
  173. void release_overhead (void);
  174. static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
  175. static unsigned calculate_allocation_1 (unsigned, unsigned);
  176. /* Note that vec_prefix should be a base class for vec, but we use
  177. offsetof() on vector fields of tree structures (e.g.,
  178. tree_binfo::base_binfos), and offsetof only supports base types.
  179. To compensate, we make vec_prefix a field inside vec and make
  180. vec a friend class of vec_prefix so it can access its fields. */
  181. template <typename, typename, typename> friend struct vec;
  182. /* The allocator types also need access to our internals. */
  183. friend struct va_gc;
  184. friend struct va_gc_atomic;
  185. friend struct va_heap;
  186. unsigned m_alloc : 31;
  187. unsigned m_using_auto_storage : 1;
  188. unsigned m_num;
  189. };
  190. /* Calculate the number of slots to reserve a vector, making sure that
  191. RESERVE slots are free. If EXACT grow exactly, otherwise grow
  192. exponentially. PFX is the control data for the vector. */
  193. inline unsigned
  194. vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
  195. bool exact)
  196. {
  197. if (exact)
  198. return (pfx ? pfx->m_num : 0) + reserve;
  199. else if (!pfx)
  200. return MAX (4, reserve);
  201. return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
  202. }
  203. template<typename, typename, typename> struct vec;
  204. /* Valid vector layouts
  205. vl_embed - Embeddable vector that uses the trailing array idiom.
  206. vl_ptr - Space efficient vector that uses a pointer to an
  207. embeddable vector. */
  208. struct vl_embed { };
  209. struct vl_ptr { };
  210. /* Types of supported allocations
  211. va_heap - Allocation uses malloc/free.
  212. va_gc - Allocation uses ggc_alloc.
  213. va_gc_atomic - Same as GC, but individual elements of the array
  214. do not need to be marked during collection. */
  215. /* Allocator type for heap vectors. */
  216. struct va_heap
  217. {
  218. /* Heap vectors are frequently regular instances, so use the vl_ptr
  219. layout for them. */
  220. typedef vl_ptr default_layout;
  221. template<typename T>
  222. static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
  223. CXX_MEM_STAT_INFO);
  224. template<typename T>
  225. static void release (vec<T, va_heap, vl_embed> *&);
  226. };
  227. /* Allocator for heap memory. Ensure there are at least RESERVE free
  228. slots in V. If EXACT is true, grow exactly, else grow
  229. exponentially. As a special case, if the vector had not been
  230. allocated and and RESERVE is 0, no vector will be created. */
  231. template<typename T>
  232. inline void
  233. va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
  234. MEM_STAT_DECL)
  235. {
  236. unsigned alloc
  237. = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
  238. gcc_checking_assert (alloc);
  239. if (GATHER_STATISTICS && v)
  240. v->m_vecpfx.release_overhead ();
  241. size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
  242. unsigned nelem = v ? v->length () : 0;
  243. v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
  244. v->embedded_init (alloc, nelem);
  245. if (GATHER_STATISTICS)
  246. v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
  247. }
  248. /* Free the heap space allocated for vector V. */
  249. template<typename T>
  250. void
  251. va_heap::release (vec<T, va_heap, vl_embed> *&v)
  252. {
  253. if (v == NULL)
  254. return;
  255. if (GATHER_STATISTICS)
  256. v->m_vecpfx.release_overhead ();
  257. ::free (v);
  258. v = NULL;
  259. }
  260. /* Allocator type for GC vectors. Notice that we need the structure
  261. declaration even if GC is not enabled. */
  262. struct va_gc
  263. {
  264. /* Use vl_embed as the default layout for GC vectors. Due to GTY
  265. limitations, GC vectors must always be pointers, so it is more
  266. efficient to use a pointer to the vl_embed layout, rather than
  267. using a pointer to a pointer as would be the case with vl_ptr. */
  268. typedef vl_embed default_layout;
  269. template<typename T, typename A>
  270. static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
  271. CXX_MEM_STAT_INFO);
  272. template<typename T, typename A>
  273. static void release (vec<T, A, vl_embed> *&v);
  274. };
  275. /* Free GC memory used by V and reset V to NULL. */
  276. template<typename T, typename A>
  277. inline void
  278. va_gc::release (vec<T, A, vl_embed> *&v)
  279. {
  280. if (v)
  281. ::ggc_free (v);
  282. v = NULL;
  283. }
  284. /* Allocator for GC memory. Ensure there are at least RESERVE free
  285. slots in V. If EXACT is true, grow exactly, else grow
  286. exponentially. As a special case, if the vector had not been
  287. allocated and and RESERVE is 0, no vector will be created. */
  288. template<typename T, typename A>
  289. void
  290. va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
  291. MEM_STAT_DECL)
  292. {
  293. unsigned alloc
  294. = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
  295. if (!alloc)
  296. {
  297. ::ggc_free (v);
  298. v = NULL;
  299. return;
  300. }
  301. /* Calculate the amount of space we want. */
  302. size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
  303. /* Ask the allocator how much space it will really give us. */
  304. size = ::ggc_round_alloc_size (size);
  305. /* Adjust the number of slots accordingly. */
  306. size_t vec_offset = sizeof (vec_prefix);
  307. size_t elt_size = sizeof (T);
  308. alloc = (size - vec_offset) / elt_size;
  309. /* And finally, recalculate the amount of space we ask for. */
  310. size = vec_offset + alloc * elt_size;
  311. unsigned nelem = v ? v->length () : 0;
  312. v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
  313. PASS_MEM_STAT));
  314. v->embedded_init (alloc, nelem);
  315. }
  316. /* Allocator type for GC vectors. This is for vectors of types
  317. atomics w.r.t. collection, so allocation and deallocation is
  318. completely inherited from va_gc. */
  319. struct va_gc_atomic : va_gc
  320. {
  321. };
  322. /* Generic vector template. Default values for A and L indicate the
  323. most commonly used strategies.
  324. FIXME - Ideally, they would all be vl_ptr to encourage using regular
  325. instances for vectors, but the existing GTY machinery is limited
  326. in that it can only deal with GC objects that are pointers
  327. themselves.
  328. This means that vector operations that need to deal with
  329. potentially NULL pointers, must be provided as free
  330. functions (see the vec_safe_* functions above). */
  331. template<typename T,
  332. typename A = va_heap,
  333. typename L = typename A::default_layout>
  334. struct GTY((user)) vec
  335. {
  336. };
  337. /* Type to provide NULL values for vec<T, A, L>. This is used to
  338. provide nil initializers for vec instances. Since vec must be
  339. a POD, we cannot have proper ctor/dtor for it. To initialize
  340. a vec instance, you can assign it the value vNULL. */
  341. struct vnull
  342. {
  343. template <typename T, typename A, typename L>
  344. operator vec<T, A, L> () { return vec<T, A, L>(); }
  345. };
  346. extern vnull vNULL;
  347. /* Embeddable vector. These vectors are suitable to be embedded
  348. in other data structures so that they can be pre-allocated in a
  349. contiguous memory block.
  350. Embeddable vectors are implemented using the trailing array idiom,
  351. thus they are not resizeable without changing the address of the
  352. vector object itself. This means you cannot have variables or
  353. fields of embeddable vector type -- always use a pointer to a
  354. vector. The one exception is the final field of a structure, which
  355. could be a vector type.
  356. You will have to use the embedded_size & embedded_init calls to
  357. create such objects, and they will not be resizeable (so the 'safe'
  358. allocation variants are not available).
  359. Properties:
  360. - The whole vector and control data are allocated in a single
  361. contiguous block. It uses the trailing-vector idiom, so
  362. allocation must reserve enough space for all the elements
  363. in the vector plus its control data.
  364. - The vector cannot be re-allocated.
  365. - The vector cannot grow nor shrink.
  366. - No indirections needed for access/manipulation.
  367. - It requires 2 words of storage (prior to vector allocation). */
  368. template<typename T, typename A>
  369. struct GTY((user)) vec<T, A, vl_embed>
  370. {
  371. public:
  372. unsigned allocated (void) const { return m_vecpfx.m_alloc; }
  373. unsigned length (void) const { return m_vecpfx.m_num; }
  374. bool is_empty (void) const { return m_vecpfx.m_num == 0; }
  375. T *address (void) { return m_vecdata; }
  376. const T *address (void) const { return m_vecdata; }
  377. const T &operator[] (unsigned) const;
  378. T &operator[] (unsigned);
  379. T &last (void);
  380. bool space (unsigned) const;
  381. bool iterate (unsigned, T *) const;
  382. bool iterate (unsigned, T **) const;
  383. vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
  384. void splice (vec &);
  385. void splice (vec *src);
  386. T *quick_push (const T &);
  387. T &pop (void);
  388. void truncate (unsigned);
  389. void quick_insert (unsigned, const T &);
  390. void ordered_remove (unsigned);
  391. void unordered_remove (unsigned);
  392. void block_remove (unsigned, unsigned);
  393. void qsort (int (*) (const void *, const void *));
  394. T *bsearch (const void *key, int (*compar)(const void *, const void *));
  395. unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
  396. static size_t embedded_size (unsigned);
  397. void embedded_init (unsigned, unsigned = 0, unsigned = 0);
  398. void quick_grow (unsigned len);
  399. void quick_grow_cleared (unsigned len);
  400. /* vec class can access our internal data and functions. */
  401. template <typename, typename, typename> friend struct vec;
  402. /* The allocator types also need access to our internals. */
  403. friend struct va_gc;
  404. friend struct va_gc_atomic;
  405. friend struct va_heap;
  406. /* FIXME - These fields should be private, but we need to cater to
  407. compilers that have stricter notions of PODness for types. */
  408. vec_prefix m_vecpfx;
  409. T m_vecdata[1];
  410. };
  411. /* Convenience wrapper functions to use when dealing with pointers to
  412. embedded vectors. Some functionality for these vectors must be
  413. provided via free functions for these reasons:
  414. 1- The pointer may be NULL (e.g., before initial allocation).
  415. 2- When the vector needs to grow, it must be reallocated, so
  416. the pointer will change its value.
  417. Because of limitations with the current GC machinery, all vectors
  418. in GC memory *must* be pointers. */
  419. /* If V contains no room for NELEMS elements, return false. Otherwise,
  420. return true. */
  421. template<typename T, typename A>
  422. inline bool
  423. vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
  424. {
  425. return v ? v->space (nelems) : nelems == 0;
  426. }
  427. /* If V is NULL, return 0. Otherwise, return V->length(). */
  428. template<typename T, typename A>
  429. inline unsigned
  430. vec_safe_length (const vec<T, A, vl_embed> *v)
  431. {
  432. return v ? v->length () : 0;
  433. }
  434. /* If V is NULL, return NULL. Otherwise, return V->address(). */
  435. template<typename T, typename A>
  436. inline T *
  437. vec_safe_address (vec<T, A, vl_embed> *v)
  438. {
  439. return v ? v->address () : NULL;
  440. }
  441. /* If V is NULL, return true. Otherwise, return V->is_empty(). */
  442. template<typename T, typename A>
  443. inline bool
  444. vec_safe_is_empty (vec<T, A, vl_embed> *v)
  445. {
  446. return v ? v->is_empty () : true;
  447. }
  448. /* If V does not have space for NELEMS elements, call
  449. V->reserve(NELEMS, EXACT). */
  450. template<typename T, typename A>
  451. inline bool
  452. vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
  453. CXX_MEM_STAT_INFO)
  454. {
  455. bool extend = nelems ? !vec_safe_space (v, nelems) : false;
  456. if (extend)
  457. A::reserve (v, nelems, exact PASS_MEM_STAT);
  458. return extend;
  459. }
  460. template<typename T, typename A>
  461. inline bool
  462. vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
  463. CXX_MEM_STAT_INFO)
  464. {
  465. return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
  466. }
  467. /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
  468. is 0, V is initialized to NULL. */
  469. template<typename T, typename A>
  470. inline void
  471. vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
  472. {
  473. v = NULL;
  474. vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
  475. }
  476. /* Free the GC memory allocated by vector V and set it to NULL. */
  477. template<typename T, typename A>
  478. inline void
  479. vec_free (vec<T, A, vl_embed> *&v)
  480. {
  481. A::release (v);
  482. }
  483. /* Grow V to length LEN. Allocate it, if necessary. */
  484. template<typename T, typename A>
  485. inline void
  486. vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
  487. {
  488. unsigned oldlen = vec_safe_length (v);
  489. gcc_checking_assert (len >= oldlen);
  490. vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
  491. v->quick_grow (len);
  492. }
  493. /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
  494. template<typename T, typename A>
  495. inline void
  496. vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
  497. {
  498. unsigned oldlen = vec_safe_length (v);
  499. vec_safe_grow (v, len PASS_MEM_STAT);
  500. memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
  501. }
  502. /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
  503. template<typename T, typename A>
  504. inline bool
  505. vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
  506. {
  507. if (v)
  508. return v->iterate (ix, ptr);
  509. else
  510. {
  511. *ptr = 0;
  512. return false;
  513. }
  514. }
  515. template<typename T, typename A>
  516. inline bool
  517. vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
  518. {
  519. if (v)
  520. return v->iterate (ix, ptr);
  521. else
  522. {
  523. *ptr = 0;
  524. return false;
  525. }
  526. }
  527. /* If V has no room for one more element, reallocate it. Then call
  528. V->quick_push(OBJ). */
  529. template<typename T, typename A>
  530. inline T *
  531. vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
  532. {
  533. vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  534. return v->quick_push (obj);
  535. }
  536. /* if V has no room for one more element, reallocate it. Then call
  537. V->quick_insert(IX, OBJ). */
  538. template<typename T, typename A>
  539. inline void
  540. vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
  541. CXX_MEM_STAT_INFO)
  542. {
  543. vec_safe_reserve (v, 1, false PASS_MEM_STAT);
  544. v->quick_insert (ix, obj);
  545. }
  546. /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
  547. template<typename T, typename A>
  548. inline void
  549. vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
  550. {
  551. if (v)
  552. v->truncate (size);
  553. }
  554. /* If SRC is not NULL, return a pointer to a copy of it. */
  555. template<typename T, typename A>
  556. inline vec<T, A, vl_embed> *
  557. vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
  558. {
  559. return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
  560. }
  561. /* Copy the elements from SRC to the end of DST as if by memcpy.
  562. Reallocate DST, if necessary. */
  563. template<typename T, typename A>
  564. inline void
  565. vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
  566. CXX_MEM_STAT_INFO)
  567. {
  568. unsigned src_len = vec_safe_length (src);
  569. if (src_len)
  570. {
  571. vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
  572. PASS_MEM_STAT);
  573. dst->splice (*src);
  574. }
  575. }
  576. /* Index into vector. Return the IX'th element. IX must be in the
  577. domain of the vector. */
  578. template<typename T, typename A>
  579. inline const T &
  580. vec<T, A, vl_embed>::operator[] (unsigned ix) const
  581. {
  582. gcc_checking_assert (ix < m_vecpfx.m_num);
  583. return m_vecdata[ix];
  584. }
  585. template<typename T, typename A>
  586. inline T &
  587. vec<T, A, vl_embed>::operator[] (unsigned ix)
  588. {
  589. gcc_checking_assert (ix < m_vecpfx.m_num);
  590. return m_vecdata[ix];
  591. }
  592. /* Get the final element of the vector, which must not be empty. */
  593. template<typename T, typename A>
  594. inline T &
  595. vec<T, A, vl_embed>::last (void)
  596. {
  597. gcc_checking_assert (m_vecpfx.m_num > 0);
  598. return (*this)[m_vecpfx.m_num - 1];
  599. }
  600. /* If this vector has space for NELEMS additional entries, return
  601. true. You usually only need to use this if you are doing your
  602. own vector reallocation, for instance on an embedded vector. This
  603. returns true in exactly the same circumstances that vec::reserve
  604. will. */
  605. template<typename T, typename A>
  606. inline bool
  607. vec<T, A, vl_embed>::space (unsigned nelems) const
  608. {
  609. return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
  610. }
  611. /* Return iteration condition and update PTR to point to the IX'th
  612. element of this vector. Use this to iterate over the elements of a
  613. vector as follows,
  614. for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
  615. continue; */
  616. template<typename T, typename A>
  617. inline bool
  618. vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
  619. {
  620. if (ix < m_vecpfx.m_num)
  621. {
  622. *ptr = m_vecdata[ix];
  623. return true;
  624. }
  625. else
  626. {
  627. *ptr = 0;
  628. return false;
  629. }
  630. }
  631. /* Return iteration condition and update *PTR to point to the
  632. IX'th element of this vector. Use this to iterate over the
  633. elements of a vector as follows,
  634. for (ix = 0; v->iterate (ix, &ptr); ix++)
  635. continue;
  636. This variant is for vectors of objects. */
  637. template<typename T, typename A>
  638. inline bool
  639. vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
  640. {
  641. if (ix < m_vecpfx.m_num)
  642. {
  643. *ptr = CONST_CAST (T *, &m_vecdata[ix]);
  644. return true;
  645. }
  646. else
  647. {
  648. *ptr = 0;
  649. return false;
  650. }
  651. }
  652. /* Return a pointer to a copy of this vector. */
  653. template<typename T, typename A>
  654. inline vec<T, A, vl_embed> *
  655. vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
  656. {
  657. vec<T, A, vl_embed> *new_vec = NULL;
  658. unsigned len = length ();
  659. if (len)
  660. {
  661. vec_alloc (new_vec, len PASS_MEM_STAT);
  662. new_vec->embedded_init (len, len);
  663. memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
  664. }
  665. return new_vec;
  666. }
  667. /* Copy the elements from SRC to the end of this vector as if by memcpy.
  668. The vector must have sufficient headroom available. */
  669. template<typename T, typename A>
  670. inline void
  671. vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
  672. {
  673. unsigned len = src.length ();
  674. if (len)
  675. {
  676. gcc_checking_assert (space (len));
  677. memcpy (address () + length (), src.address (), len * sizeof (T));
  678. m_vecpfx.m_num += len;
  679. }
  680. }
  681. template<typename T, typename A>
  682. inline void
  683. vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
  684. {
  685. if (src)
  686. splice (*src);
  687. }
  688. /* Push OBJ (a new element) onto the end of the vector. There must be
  689. sufficient space in the vector. Return a pointer to the slot
  690. where OBJ was inserted. */
  691. template<typename T, typename A>
  692. inline T *
  693. vec<T, A, vl_embed>::quick_push (const T &obj)
  694. {
  695. gcc_checking_assert (space (1));
  696. T *slot = &m_vecdata[m_vecpfx.m_num++];
  697. *slot = obj;
  698. return slot;
  699. }
  700. /* Pop and return the last element off the end of the vector. */
  701. template<typename T, typename A>
  702. inline T &
  703. vec<T, A, vl_embed>::pop (void)
  704. {
  705. gcc_checking_assert (length () > 0);
  706. return m_vecdata[--m_vecpfx.m_num];
  707. }
  708. /* Set the length of the vector to SIZE. The new length must be less
  709. than or equal to the current length. This is an O(1) operation. */
  710. template<typename T, typename A>
  711. inline void
  712. vec<T, A, vl_embed>::truncate (unsigned size)
  713. {
  714. gcc_checking_assert (length () >= size);
  715. m_vecpfx.m_num = size;
  716. }
  717. /* Insert an element, OBJ, at the IXth position of this vector. There
  718. must be sufficient space. */
  719. template<typename T, typename A>
  720. inline void
  721. vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
  722. {
  723. gcc_checking_assert (length () < allocated ());
  724. gcc_checking_assert (ix <= length ());
  725. T *slot = &m_vecdata[ix];
  726. memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
  727. *slot = obj;
  728. }
  729. /* Remove an element from the IXth position of this vector. Ordering of
  730. remaining elements is preserved. This is an O(N) operation due to
  731. memmove. */
  732. template<typename T, typename A>
  733. inline void
  734. vec<T, A, vl_embed>::ordered_remove (unsigned ix)
  735. {
  736. gcc_checking_assert (ix < length ());
  737. T *slot = &m_vecdata[ix];
  738. memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
  739. }
  740. /* Remove an element from the IXth position of this vector. Ordering of
  741. remaining elements is destroyed. This is an O(1) operation. */
  742. template<typename T, typename A>
  743. inline void
  744. vec<T, A, vl_embed>::unordered_remove (unsigned ix)
  745. {
  746. gcc_checking_assert (ix < length ());
  747. m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
  748. }
  749. /* Remove LEN elements starting at the IXth. Ordering is retained.
  750. This is an O(N) operation due to memmove. */
  751. template<typename T, typename A>
  752. inline void
  753. vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
  754. {
  755. gcc_checking_assert (ix + len <= length ());
  756. T *slot = &m_vecdata[ix];
  757. m_vecpfx.m_num -= len;
  758. memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
  759. }
  760. /* Sort the contents of this vector with qsort. CMP is the comparison
  761. function to pass to qsort. */
  762. template<typename T, typename A>
  763. inline void
  764. vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
  765. {
  766. if (length () > 1)
  767. ::qsort (address (), length (), sizeof (T), cmp);
  768. }
  769. /* Search the contents of the sorted vector with a binary search.
  770. CMP is the comparison function to pass to bsearch. */
  771. template<typename T, typename A>
  772. inline T *
  773. vec<T, A, vl_embed>::bsearch (const void *key,
  774. int (*compar) (const void *, const void *))
  775. {
  776. const void *base = this->address ();
  777. size_t nmemb = this->length ();
  778. size_t size = sizeof (T);
  779. /* The following is a copy of glibc stdlib-bsearch.h. */
  780. size_t l, u, idx;
  781. const void *p;
  782. int comparison;
  783. l = 0;
  784. u = nmemb;
  785. while (l < u)
  786. {
  787. idx = (l + u) / 2;
  788. p = (const void *) (((const char *) base) + (idx * size));
  789. comparison = (*compar) (key, p);
  790. if (comparison < 0)
  791. u = idx;
  792. else if (comparison > 0)
  793. l = idx + 1;
  794. else
  795. return (T *)const_cast<void *>(p);
  796. }
  797. return NULL;
  798. }
  799. /* Find and return the first position in which OBJ could be inserted
  800. without changing the ordering of this vector. LESSTHAN is a
  801. function that returns true if the first argument is strictly less
  802. than the second. */
  803. template<typename T, typename A>
  804. unsigned
  805. vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
  806. const
  807. {
  808. unsigned int len = length ();
  809. unsigned int half, middle;
  810. unsigned int first = 0;
  811. while (len > 0)
  812. {
  813. half = len / 2;
  814. middle = first;
  815. middle += half;
  816. T middle_elem = (*this)[middle];
  817. if (lessthan (middle_elem, obj))
  818. {
  819. first = middle;
  820. ++first;
  821. len = len - half - 1;
  822. }
  823. else
  824. len = half;
  825. }
  826. return first;
  827. }
  828. /* Return the number of bytes needed to embed an instance of an
  829. embeddable vec inside another data structure.
  830. Use these methods to determine the required size and initialization
  831. of a vector V of type T embedded within another structure (as the
  832. final member):
  833. size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
  834. void v->embedded_init (unsigned alloc, unsigned num);
  835. These allow the caller to perform the memory allocation. */
  836. template<typename T, typename A>
  837. inline size_t
  838. vec<T, A, vl_embed>::embedded_size (unsigned alloc)
  839. {
  840. typedef vec<T, A, vl_embed> vec_embedded;
  841. return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
  842. }
  843. /* Initialize the vector to contain room for ALLOC elements and
  844. NUM active elements. */
  845. template<typename T, typename A>
  846. inline void
  847. vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
  848. {
  849. m_vecpfx.m_alloc = alloc;
  850. m_vecpfx.m_using_auto_storage = aut;
  851. m_vecpfx.m_num = num;
  852. }
  853. /* Grow the vector to a specific length. LEN must be as long or longer than
  854. the current length. The new elements are uninitialized. */
  855. template<typename T, typename A>
  856. inline void
  857. vec<T, A, vl_embed>::quick_grow (unsigned len)
  858. {
  859. gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
  860. m_vecpfx.m_num = len;
  861. }
  862. /* Grow the vector to a specific length. LEN must be as long or longer than
  863. the current length. The new elements are initialized to zero. */
  864. template<typename T, typename A>
  865. inline void
  866. vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
  867. {
  868. unsigned oldlen = length ();
  869. quick_grow (len);
  870. memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
  871. }
  872. /* Garbage collection support for vec<T, A, vl_embed>. */
  873. template<typename T>
  874. void
  875. gt_ggc_mx (vec<T, va_gc> *v)
  876. {
  877. extern void gt_ggc_mx (T &);
  878. for (unsigned i = 0; i < v->length (); i++)
  879. gt_ggc_mx ((*v)[i]);
  880. }
  881. template<typename T>
  882. void
  883. gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
  884. {
  885. /* Nothing to do. Vectors of atomic types wrt GC do not need to
  886. be traversed. */
  887. }
  888. /* PCH support for vec<T, A, vl_embed>. */
  889. template<typename T, typename A>
  890. void
  891. gt_pch_nx (vec<T, A, vl_embed> *v)
  892. {
  893. extern void gt_pch_nx (T &);
  894. for (unsigned i = 0; i < v->length (); i++)
  895. gt_pch_nx ((*v)[i]);
  896. }
  897. template<typename T, typename A>
  898. void
  899. gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
  900. {
  901. for (unsigned i = 0; i < v->length (); i++)
  902. op (&((*v)[i]), cookie);
  903. }
  904. template<typename T, typename A>
  905. void
  906. gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
  907. {
  908. extern void gt_pch_nx (T *, gt_pointer_operator, void *);
  909. for (unsigned i = 0; i < v->length (); i++)
  910. gt_pch_nx (&((*v)[i]), op, cookie);
  911. }
  912. /* Space efficient vector. These vectors can grow dynamically and are
  913. allocated together with their control data. They are suited to be
  914. included in data structures. Prior to initial allocation, they
  915. only take a single word of storage.
  916. These vectors are implemented as a pointer to an embeddable vector.
  917. The semantics allow for this pointer to be NULL to represent empty
  918. vectors. This way, empty vectors occupy minimal space in the
  919. structure containing them.
  920. Properties:
  921. - The whole vector and control data are allocated in a single
  922. contiguous block.
  923. - The whole vector may be re-allocated.
  924. - Vector data may grow and shrink.
  925. - Access and manipulation requires a pointer test and
  926. indirection.
  927. - It requires 1 word of storage (prior to vector allocation).
  928. Limitations:
  929. These vectors must be PODs because they are stored in unions.
  930. (http://en.wikipedia.org/wiki/Plain_old_data_structures).
  931. As long as we use C++03, we cannot have constructors nor
  932. destructors in classes that are stored in unions. */
  933. template<typename T>
  934. struct vec<T, va_heap, vl_ptr>
  935. {
  936. public:
  937. /* Memory allocation and deallocation for the embedded vector.
  938. Needed because we cannot have proper ctors/dtors defined. */
  939. void create (unsigned nelems CXX_MEM_STAT_INFO);
  940. void release (void);
  941. /* Vector operations. */
  942. bool exists (void) const
  943. { return m_vec != NULL; }
  944. bool is_empty (void) const
  945. { return m_vec ? m_vec->is_empty () : true; }
  946. unsigned length (void) const
  947. { return m_vec ? m_vec->length () : 0; }
  948. T *address (void)
  949. { return m_vec ? m_vec->m_vecdata : NULL; }
  950. const T *address (void) const
  951. { return m_vec ? m_vec->m_vecdata : NULL; }
  952. const T &operator[] (unsigned ix) const
  953. { return (*m_vec)[ix]; }
  954. bool operator!=(const vec &other) const
  955. { return !(*this == other); }
  956. bool operator==(const vec &other) const
  957. { return address () == other.address (); }
  958. T &operator[] (unsigned ix)
  959. { return (*m_vec)[ix]; }
  960. T &last (void)
  961. { return m_vec->last (); }
  962. bool space (int nelems) const
  963. { return m_vec ? m_vec->space (nelems) : nelems == 0; }
  964. bool iterate (unsigned ix, T *p) const;
  965. bool iterate (unsigned ix, T **p) const;
  966. vec copy (ALONE_CXX_MEM_STAT_INFO) const;
  967. bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
  968. bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
  969. void splice (vec &);
  970. void safe_splice (vec & CXX_MEM_STAT_INFO);
  971. T *quick_push (const T &);
  972. T *safe_push (const T &CXX_MEM_STAT_INFO);
  973. T &pop (void);
  974. void truncate (unsigned);
  975. void safe_grow (unsigned CXX_MEM_STAT_INFO);
  976. void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
  977. void quick_grow (unsigned);
  978. void quick_grow_cleared (unsigned);
  979. void quick_insert (unsigned, const T &);
  980. void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
  981. void ordered_remove (unsigned);
  982. void unordered_remove (unsigned);
  983. void block_remove (unsigned, unsigned);
  984. void qsort (int (*) (const void *, const void *));
  985. T *bsearch (const void *key, int (*compar)(const void *, const void *));
  986. unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
  987. bool using_auto_storage () const;
  988. /* FIXME - This field should be private, but we need to cater to
  989. compilers that have stricter notions of PODness for types. */
  990. vec<T, va_heap, vl_embed> *m_vec;
  991. };
  992. /* auto_vec is a subclass of vec that automatically manages creating and
  993. releasing the internal vector. If N is non zero then it has N elements of
  994. internal storage. The default is no internal storage, and you probably only
  995. want to ask for internal storage for vectors on the stack because if the
  996. size of the vector is larger than the internal storage that space is wasted.
  997. */
  998. template<typename T, size_t N = 0>
  999. class auto_vec : public vec<T, va_heap>
  1000. {
  1001. public:
  1002. auto_vec ()
  1003. {
  1004. m_auto.embedded_init (MAX (N, 2), 0, 1);
  1005. this->m_vec = &m_auto;
  1006. }
  1007. ~auto_vec ()
  1008. {
  1009. this->release ();
  1010. }
  1011. private:
  1012. vec<T, va_heap, vl_embed> m_auto;
  1013. T m_data[MAX (N - 1, 1)];
  1014. };
  1015. /* auto_vec is a sub class of vec whose storage is released when it is
  1016. destroyed. */
  1017. template<typename T>
  1018. class auto_vec<T, 0> : public vec<T, va_heap>
  1019. {
  1020. public:
  1021. auto_vec () { this->m_vec = NULL; }
  1022. auto_vec (size_t n) { this->create (n); }
  1023. ~auto_vec () { this->release (); }
  1024. };
  1025. /* Allocate heap memory for pointer V and create the internal vector
  1026. with space for NELEMS elements. If NELEMS is 0, the internal
  1027. vector is initialized to empty. */
  1028. template<typename T>
  1029. inline void
  1030. vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
  1031. {
  1032. v = new vec<T>;
  1033. v->create (nelems PASS_MEM_STAT);
  1034. }
  1035. /* Conditionally allocate heap memory for VEC and its internal vector. */
  1036. template<typename T>
  1037. inline void
  1038. vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
  1039. {
  1040. if (!vec)
  1041. vec_alloc (vec, nelems PASS_MEM_STAT);
  1042. }
  1043. /* Free the heap memory allocated by vector V and set it to NULL. */
  1044. template<typename T>
  1045. inline void
  1046. vec_free (vec<T> *&v)
  1047. {
  1048. if (v == NULL)
  1049. return;
  1050. v->release ();
  1051. delete v;
  1052. v = NULL;
  1053. }
  1054. /* Return iteration condition and update PTR to point to the IX'th
  1055. element of this vector. Use this to iterate over the elements of a
  1056. vector as follows,
  1057. for (ix = 0; v.iterate (ix, &ptr); ix++)
  1058. continue; */
  1059. template<typename T>
  1060. inline bool
  1061. vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
  1062. {
  1063. if (m_vec)
  1064. return m_vec->iterate (ix, ptr);
  1065. else
  1066. {
  1067. *ptr = 0;
  1068. return false;
  1069. }
  1070. }
  1071. /* Return iteration condition and update *PTR to point to the
  1072. IX'th element of this vector. Use this to iterate over the
  1073. elements of a vector as follows,
  1074. for (ix = 0; v->iterate (ix, &ptr); ix++)
  1075. continue;
  1076. This variant is for vectors of objects. */
  1077. template<typename T>
  1078. inline bool
  1079. vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
  1080. {
  1081. if (m_vec)
  1082. return m_vec->iterate (ix, ptr);
  1083. else
  1084. {
  1085. *ptr = 0;
  1086. return false;
  1087. }
  1088. }
  1089. /* Convenience macro for forward iteration. */
  1090. #define FOR_EACH_VEC_ELT(V, I, P) \
  1091. for (I = 0; (V).iterate ((I), &(P)); ++(I))
  1092. #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
  1093. for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
  1094. /* Likewise, but start from FROM rather than 0. */
  1095. #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
  1096. for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
  1097. /* Convenience macro for reverse iteration. */
  1098. #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
  1099. for (I = (V).length () - 1; \
  1100. (V).iterate ((I), &(P)); \
  1101. (I)--)
  1102. #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
  1103. for (I = vec_safe_length (V) - 1; \
  1104. vec_safe_iterate ((V), (I), &(P)); \
  1105. (I)--)
  1106. /* Return a copy of this vector. */
  1107. template<typename T>
  1108. inline vec<T, va_heap, vl_ptr>
  1109. vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
  1110. {
  1111. vec<T, va_heap, vl_ptr> new_vec = vNULL;
  1112. if (length ())
  1113. new_vec.m_vec = m_vec->copy ();
  1114. return new_vec;
  1115. }
  1116. /* Ensure that the vector has at least RESERVE slots available (if
  1117. EXACT is false), or exactly RESERVE slots available (if EXACT is
  1118. true).
  1119. This may create additional headroom if EXACT is false.
  1120. Note that this can cause the embedded vector to be reallocated.
  1121. Returns true iff reallocation actually occurred. */
  1122. template<typename T>
  1123. inline bool
  1124. vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
  1125. {
  1126. if (space (nelems))
  1127. return false;
  1128. /* For now play a game with va_heap::reserve to hide our auto storage if any,
  1129. this is necessary because it doesn't have enough information to know the
  1130. embedded vector is in auto storage, and so should not be freed. */
  1131. vec<T, va_heap, vl_embed> *oldvec = m_vec;
  1132. unsigned int oldsize = 0;
  1133. bool handle_auto_vec = m_vec && using_auto_storage ();
  1134. if (handle_auto_vec)
  1135. {
  1136. m_vec = NULL;
  1137. oldsize = oldvec->length ();
  1138. nelems += oldsize;
  1139. }
  1140. va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
  1141. if (handle_auto_vec)
  1142. {
  1143. memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
  1144. m_vec->m_vecpfx.m_num = oldsize;
  1145. }
  1146. return true;
  1147. }
  1148. /* Ensure that this vector has exactly NELEMS slots available. This
  1149. will not create additional headroom. Note this can cause the
  1150. embedded vector to be reallocated. Returns true iff reallocation
  1151. actually occurred. */
  1152. template<typename T>
  1153. inline bool
  1154. vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
  1155. {
  1156. return reserve (nelems, true PASS_MEM_STAT);
  1157. }
  1158. /* Create the internal vector and reserve NELEMS for it. This is
  1159. exactly like vec::reserve, but the internal vector is
  1160. unconditionally allocated from scratch. The old one, if it
  1161. existed, is lost. */
  1162. template<typename T>
  1163. inline void
  1164. vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
  1165. {
  1166. m_vec = NULL;
  1167. if (nelems > 0)
  1168. reserve_exact (nelems PASS_MEM_STAT);
  1169. }
  1170. /* Free the memory occupied by the embedded vector. */
  1171. template<typename T>
  1172. inline void
  1173. vec<T, va_heap, vl_ptr>::release (void)
  1174. {
  1175. if (!m_vec)
  1176. return;
  1177. if (using_auto_storage ())
  1178. {
  1179. m_vec->m_vecpfx.m_num = 0;
  1180. return;
  1181. }
  1182. va_heap::release (m_vec);
  1183. }
  1184. /* Copy the elements from SRC to the end of this vector as if by memcpy.
  1185. SRC and this vector must be allocated with the same memory
  1186. allocation mechanism. This vector is assumed to have sufficient
  1187. headroom available. */
  1188. template<typename T>
  1189. inline void
  1190. vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
  1191. {
  1192. if (src.m_vec)
  1193. m_vec->splice (*(src.m_vec));
  1194. }
  1195. /* Copy the elements in SRC to the end of this vector as if by memcpy.
  1196. SRC and this vector must be allocated with the same mechanism.
  1197. If there is not enough headroom in this vector, it will be reallocated
  1198. as needed. */
  1199. template<typename T>
  1200. inline void
  1201. vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
  1202. MEM_STAT_DECL)
  1203. {
  1204. if (src.length ())
  1205. {
  1206. reserve_exact (src.length ());
  1207. splice (src);
  1208. }
  1209. }
  1210. /* Push OBJ (a new element) onto the end of the vector. There must be
  1211. sufficient space in the vector. Return a pointer to the slot
  1212. where OBJ was inserted. */
  1213. template<typename T>
  1214. inline T *
  1215. vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
  1216. {
  1217. return m_vec->quick_push (obj);
  1218. }
  1219. /* Push a new element OBJ onto the end of this vector. Reallocates
  1220. the embedded vector, if needed. Return a pointer to the slot where
  1221. OBJ was inserted. */
  1222. template<typename T>
  1223. inline T *
  1224. vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
  1225. {
  1226. reserve (1, false PASS_MEM_STAT);
  1227. return quick_push (obj);
  1228. }
  1229. /* Pop and return the last element off the end of the vector. */
  1230. template<typename T>
  1231. inline T &
  1232. vec<T, va_heap, vl_ptr>::pop (void)
  1233. {
  1234. return m_vec->pop ();
  1235. }
  1236. /* Set the length of the vector to LEN. The new length must be less
  1237. than or equal to the current length. This is an O(1) operation. */
  1238. template<typename T>
  1239. inline void
  1240. vec<T, va_heap, vl_ptr>::truncate (unsigned size)
  1241. {
  1242. if (m_vec)
  1243. m_vec->truncate (size);
  1244. else
  1245. gcc_checking_assert (size == 0);
  1246. }
  1247. /* Grow the vector to a specific length. LEN must be as long or
  1248. longer than the current length. The new elements are
  1249. uninitialized. Reallocate the internal vector, if needed. */
  1250. template<typename T>
  1251. inline void
  1252. vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
  1253. {
  1254. unsigned oldlen = length ();
  1255. gcc_checking_assert (oldlen <= len);
  1256. reserve_exact (len - oldlen PASS_MEM_STAT);
  1257. if (m_vec)
  1258. m_vec->quick_grow (len);
  1259. else
  1260. gcc_checking_assert (len == 0);
  1261. }
  1262. /* Grow the embedded vector to a specific length. LEN must be as
  1263. long or longer than the current length. The new elements are
  1264. initialized to zero. Reallocate the internal vector, if needed. */
  1265. template<typename T>
  1266. inline void
  1267. vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
  1268. {
  1269. unsigned oldlen = length ();
  1270. safe_grow (len PASS_MEM_STAT);
  1271. memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
  1272. }
  1273. /* Same as vec::safe_grow but without reallocation of the internal vector.
  1274. If the vector cannot be extended, a runtime assertion will be triggered. */
  1275. template<typename T>
  1276. inline void
  1277. vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
  1278. {
  1279. gcc_checking_assert (m_vec);
  1280. m_vec->quick_grow (len);
  1281. }
  1282. /* Same as vec::quick_grow_cleared but without reallocation of the
  1283. internal vector. If the vector cannot be extended, a runtime
  1284. assertion will be triggered. */
  1285. template<typename T>
  1286. inline void
  1287. vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
  1288. {
  1289. gcc_checking_assert (m_vec);
  1290. m_vec->quick_grow_cleared (len);
  1291. }
  1292. /* Insert an element, OBJ, at the IXth position of this vector. There
  1293. must be sufficient space. */
  1294. template<typename T>
  1295. inline void
  1296. vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
  1297. {
  1298. m_vec->quick_insert (ix, obj);
  1299. }
  1300. /* Insert an element, OBJ, at the IXth position of the vector.
  1301. Reallocate the embedded vector, if necessary. */
  1302. template<typename T>
  1303. inline void
  1304. vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
  1305. {
  1306. reserve (1, false PASS_MEM_STAT);
  1307. quick_insert (ix, obj);
  1308. }
  1309. /* Remove an element from the IXth position of this vector. Ordering of
  1310. remaining elements is preserved. This is an O(N) operation due to
  1311. a memmove. */
  1312. template<typename T>
  1313. inline void
  1314. vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
  1315. {
  1316. m_vec->ordered_remove (ix);
  1317. }
  1318. /* Remove an element from the IXth position of this vector. Ordering
  1319. of remaining elements is destroyed. This is an O(1) operation. */
  1320. template<typename T>
  1321. inline void
  1322. vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
  1323. {
  1324. m_vec->unordered_remove (ix);
  1325. }
  1326. /* Remove LEN elements starting at the IXth. Ordering is retained.
  1327. This is an O(N) operation due to memmove. */
  1328. template<typename T>
  1329. inline void
  1330. vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
  1331. {
  1332. m_vec->block_remove (ix, len);
  1333. }
  1334. /* Sort the contents of this vector with qsort. CMP is the comparison
  1335. function to pass to qsort. */
  1336. template<typename T>
  1337. inline void
  1338. vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
  1339. {
  1340. if (m_vec)
  1341. m_vec->qsort (cmp);
  1342. }
  1343. /* Search the contents of the sorted vector with a binary search.
  1344. CMP is the comparison function to pass to bsearch. */
  1345. template<typename T>
  1346. inline T *
  1347. vec<T, va_heap, vl_ptr>::bsearch (const void *key,
  1348. int (*cmp) (const void *, const void *))
  1349. {
  1350. if (m_vec)
  1351. return m_vec->bsearch (key, cmp);
  1352. return NULL;
  1353. }
  1354. /* Find and return the first position in which OBJ could be inserted
  1355. without changing the ordering of this vector. LESSTHAN is a
  1356. function that returns true if the first argument is strictly less
  1357. than the second. */
  1358. template<typename T>
  1359. inline unsigned
  1360. vec<T, va_heap, vl_ptr>::lower_bound (T obj,
  1361. bool (*lessthan)(const T &, const T &))
  1362. const
  1363. {
  1364. return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
  1365. }
  1366. template<typename T>
  1367. inline bool
  1368. vec<T, va_heap, vl_ptr>::using_auto_storage () const
  1369. {
  1370. return m_vec->m_vecpfx.m_using_auto_storage;
  1371. }
  1372. #if (GCC_VERSION >= 3000)
  1373. # pragma GCC poison m_vec m_vecpfx m_vecdata
  1374. #endif
  1375. #endif // GCC_VEC_H