12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500 |
- // Random number extensions -*- C++ -*-
- // Copyright (C) 2012-2015 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- /** @file ext/random
- * This file is a GNU extension to the Standard C++ Library.
- */
- #ifndef _EXT_RANDOM
- #define _EXT_RANDOM 1
- #pragma GCC system_header
- #if __cplusplus < 201103L
- # include <bits/c++0x_warning.h>
- #else
- #include <random>
- #include <algorithm>
- #include <array>
- #include <ext/cmath>
- #ifdef __SSE2__
- # include <x86intrin.h>
- #endif
- #ifdef _GLIBCXX_USE_C99_STDINT_TR1
- namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- #if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
- /* Mersenne twister implementation optimized for vector operations.
- *
- * Reference: http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/SFMT/
- */
- template<typename _UIntType, size_t __m,
- size_t __pos1, size_t __sl1, size_t __sl2,
- size_t __sr1, size_t __sr2,
- uint32_t __msk1, uint32_t __msk2,
- uint32_t __msk3, uint32_t __msk4,
- uint32_t __parity1, uint32_t __parity2,
- uint32_t __parity3, uint32_t __parity4>
- class simd_fast_mersenne_twister_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(__sr1 < 32, "first right shift too large");
- static_assert(__sr2 < 16, "second right shift too large");
- static_assert(__sl1 < 32, "first left shift too large");
- static_assert(__sl2 < 16, "second left shift too large");
- public:
- typedef _UIntType result_type;
- private:
- static constexpr size_t m_w = sizeof(result_type) * 8;
- static constexpr size_t _M_nstate = __m / 128 + 1;
- static constexpr size_t _M_nstate32 = _M_nstate * 4;
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(__pos1 < _M_nstate, "POS1 not smaller than state size");
- static_assert(16 % sizeof(_UIntType) == 0,
- "UIntType size must divide 16");
- public:
- static constexpr size_t state_size = _M_nstate * (16
- / sizeof(result_type));
- static constexpr result_type default_seed = 5489u;
- // constructors and member function
- explicit
- simd_fast_mersenne_twister_engine(result_type __sd = default_seed)
- { seed(__sd); }
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq,
- simd_fast_mersenne_twister_engine>::value>
- ::type>
- explicit
- simd_fast_mersenne_twister_engine(_Sseq& __q)
- { seed(__q); }
- void
- seed(result_type __sd = default_seed);
- template<typename _Sseq>
- typename std::enable_if<std::is_class<_Sseq>::value>::type
- seed(_Sseq& __q);
- static constexpr result_type
- min()
- { return 0; };
- static constexpr result_type
- max()
- { return std::numeric_limits<result_type>::max(); }
- void
- discard(unsigned long long __z);
- result_type
- operator()()
- {
- if (__builtin_expect(_M_pos >= state_size, 0))
- _M_gen_rand();
- return _M_stateT[_M_pos++];
- }
- template<typename _UIntType_2, size_t __m_2,
- size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
- size_t __sr1_2, size_t __sr2_2,
- uint32_t __msk1_2, uint32_t __msk2_2,
- uint32_t __msk3_2, uint32_t __msk4_2,
- uint32_t __parity1_2, uint32_t __parity2_2,
- uint32_t __parity3_2, uint32_t __parity4_2>
- friend bool
- operator==(const simd_fast_mersenne_twister_engine<_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __lhs,
- const simd_fast_mersenne_twister_engine<_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __rhs);
- template<typename _UIntType_2, size_t __m_2,
- size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
- size_t __sr1_2, size_t __sr2_2,
- uint32_t __msk1_2, uint32_t __msk2_2,
- uint32_t __msk3_2, uint32_t __msk4_2,
- uint32_t __parity1_2, uint32_t __parity2_2,
- uint32_t __parity3_2, uint32_t __parity4_2,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::simd_fast_mersenne_twister_engine
- <_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x);
- template<typename _UIntType_2, size_t __m_2,
- size_t __pos1_2, size_t __sl1_2, size_t __sl2_2,
- size_t __sr1_2, size_t __sr2_2,
- uint32_t __msk1_2, uint32_t __msk2_2,
- uint32_t __msk3_2, uint32_t __msk4_2,
- uint32_t __parity1_2, uint32_t __parity2_2,
- uint32_t __parity3_2, uint32_t __parity4_2,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType_2,
- __m_2, __pos1_2, __sl1_2, __sl2_2, __sr1_2, __sr2_2,
- __msk1_2, __msk2_2, __msk3_2, __msk4_2,
- __parity1_2, __parity2_2, __parity3_2, __parity4_2>& __x);
- private:
- union
- {
- #ifdef __SSE2__
- __m128i _M_state[_M_nstate];
- #endif
- uint32_t _M_state32[_M_nstate32];
- result_type _M_stateT[state_size];
- } __attribute__ ((__aligned__ (16)));
- size_t _M_pos;
- void _M_gen_rand(void);
- void _M_period_certification();
- };
- template<typename _UIntType, size_t __m,
- size_t __pos1, size_t __sl1, size_t __sl2,
- size_t __sr1, size_t __sr2,
- uint32_t __msk1, uint32_t __msk2,
- uint32_t __msk3, uint32_t __msk4,
- uint32_t __parity1, uint32_t __parity2,
- uint32_t __parity3, uint32_t __parity4>
- inline bool
- operator!=(const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
- __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3,
- __msk4, __parity1, __parity2, __parity3, __parity4>& __lhs,
- const __gnu_cxx::simd_fast_mersenne_twister_engine<_UIntType,
- __m, __pos1, __sl1, __sl2, __sr1, __sr2, __msk1, __msk2, __msk3,
- __msk4, __parity1, __parity2, __parity3, __parity4>& __rhs)
- { return !(__lhs == __rhs); }
- /* Definitions for the SIMD-oriented Fast Mersenne Twister as defined
- * in the C implementation by Daito and Matsumoto, as both a 32-bit
- * and 64-bit version.
- */
- typedef simd_fast_mersenne_twister_engine<uint32_t, 607, 2,
- 15, 3, 13, 3,
- 0xfdff37ffU, 0xef7f3f7dU,
- 0xff777b7dU, 0x7ff7fb2fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x5986f054U>
- sfmt607;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 607, 2,
- 15, 3, 13, 3,
- 0xfdff37ffU, 0xef7f3f7dU,
- 0xff777b7dU, 0x7ff7fb2fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x5986f054U>
- sfmt607_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 1279, 7,
- 14, 3, 5, 1,
- 0xf7fefffdU, 0x7fefcfffU,
- 0xaff3ef3fU, 0xb5ffff7fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x20000000U>
- sfmt1279;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 1279, 7,
- 14, 3, 5, 1,
- 0xf7fefffdU, 0x7fefcfffU,
- 0xaff3ef3fU, 0xb5ffff7fU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x20000000U>
- sfmt1279_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 2281, 12,
- 19, 1, 5, 1,
- 0xbff7ffbfU, 0xfdfffffeU,
- 0xf7ffef7fU, 0xf2f7cbbfU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x41dfa600U>
- sfmt2281;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 2281, 12,
- 19, 1, 5, 1,
- 0xbff7ffbfU, 0xfdfffffeU,
- 0xf7ffef7fU, 0xf2f7cbbfU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x41dfa600U>
- sfmt2281_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 4253, 17,
- 20, 1, 7, 1,
- 0x9f7bffffU, 0x9fffff5fU,
- 0x3efffffbU, 0xfffff7bbU,
- 0xa8000001U, 0xaf5390a3U,
- 0xb740b3f8U, 0x6c11486dU>
- sfmt4253;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 4253, 17,
- 20, 1, 7, 1,
- 0x9f7bffffU, 0x9fffff5fU,
- 0x3efffffbU, 0xfffff7bbU,
- 0xa8000001U, 0xaf5390a3U,
- 0xb740b3f8U, 0x6c11486dU>
- sfmt4253_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 11213, 68,
- 14, 3, 7, 3,
- 0xeffff7fbU, 0xffffffefU,
- 0xdfdfbfffU, 0x7fffdbfdU,
- 0x00000001U, 0x00000000U,
- 0xe8148000U, 0xd0c7afa3U>
- sfmt11213;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 11213, 68,
- 14, 3, 7, 3,
- 0xeffff7fbU, 0xffffffefU,
- 0xdfdfbfffU, 0x7fffdbfdU,
- 0x00000001U, 0x00000000U,
- 0xe8148000U, 0xd0c7afa3U>
- sfmt11213_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 19937, 122,
- 18, 1, 11, 1,
- 0xdfffffefU, 0xddfecb7fU,
- 0xbffaffffU, 0xbffffff6U,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x13c9e684U>
- sfmt19937;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 19937, 122,
- 18, 1, 11, 1,
- 0xdfffffefU, 0xddfecb7fU,
- 0xbffaffffU, 0xbffffff6U,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0x13c9e684U>
- sfmt19937_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 44497, 330,
- 5, 3, 9, 3,
- 0xeffffffbU, 0xdfbebfffU,
- 0xbfbf7befU, 0x9ffd7bffU,
- 0x00000001U, 0x00000000U,
- 0xa3ac4000U, 0xecc1327aU>
- sfmt44497;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 44497, 330,
- 5, 3, 9, 3,
- 0xeffffffbU, 0xdfbebfffU,
- 0xbfbf7befU, 0x9ffd7bffU,
- 0x00000001U, 0x00000000U,
- 0xa3ac4000U, 0xecc1327aU>
- sfmt44497_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 86243, 366,
- 6, 7, 19, 1,
- 0xfdbffbffU, 0xbff7ff3fU,
- 0xfd77efffU, 0xbf9ff3ffU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0xe9528d85U>
- sfmt86243;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 86243, 366,
- 6, 7, 19, 1,
- 0xfdbffbffU, 0xbff7ff3fU,
- 0xfd77efffU, 0xbf9ff3ffU,
- 0x00000001U, 0x00000000U,
- 0x00000000U, 0xe9528d85U>
- sfmt86243_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 132049, 110,
- 19, 1, 21, 1,
- 0xffffbb5fU, 0xfb6ebf95U,
- 0xfffefffaU, 0xcff77fffU,
- 0x00000001U, 0x00000000U,
- 0xcb520000U, 0xc7e91c7dU>
- sfmt132049;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 132049, 110,
- 19, 1, 21, 1,
- 0xffffbb5fU, 0xfb6ebf95U,
- 0xfffefffaU, 0xcff77fffU,
- 0x00000001U, 0x00000000U,
- 0xcb520000U, 0xc7e91c7dU>
- sfmt132049_64;
- typedef simd_fast_mersenne_twister_engine<uint32_t, 216091, 627,
- 11, 3, 10, 1,
- 0xbff7bff7U, 0xbfffffffU,
- 0xbffffa7fU, 0xffddfbfbU,
- 0xf8000001U, 0x89e80709U,
- 0x3bd2b64bU, 0x0c64b1e4U>
- sfmt216091;
- typedef simd_fast_mersenne_twister_engine<uint64_t, 216091, 627,
- 11, 3, 10, 1,
- 0xbff7bff7U, 0xbfffffffU,
- 0xbffffa7fU, 0xffddfbfbU,
- 0xf8000001U, 0x89e80709U,
- 0x3bd2b64bU, 0x0c64b1e4U>
- sfmt216091_64;
- #endif // __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
- /**
- * @brief A beta continuous distribution for random numbers.
- *
- * The formula for the beta probability density function is:
- * @f[
- * p(x|\alpha,\beta) = \frac{1}{B(\alpha,\beta)}
- * x^{\alpha - 1} (1 - x)^{\beta - 1}
- * @f]
- */
- template<typename _RealType = double>
- class beta_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef beta_distribution<_RealType> distribution_type;
- friend class beta_distribution<_RealType>;
- explicit
- param_type(_RealType __alpha_val = _RealType(1),
- _RealType __beta_val = _RealType(1))
- : _M_alpha(__alpha_val), _M_beta(__beta_val)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_alpha > _RealType(0));
- _GLIBCXX_DEBUG_ASSERT(_M_beta > _RealType(0));
- }
- _RealType
- alpha() const
- { return _M_alpha; }
- _RealType
- beta() const
- { return _M_beta; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_alpha == __p2._M_alpha
- && __p1._M_beta == __p2._M_beta); }
- private:
- void
- _M_initialize();
- _RealType _M_alpha;
- _RealType _M_beta;
- };
- public:
- /**
- * @brief Constructs a beta distribution with parameters
- * @f$\alpha@f$ and @f$\beta@f$.
- */
- explicit
- beta_distribution(_RealType __alpha_val = _RealType(1),
- _RealType __beta_val = _RealType(1))
- : _M_param(__alpha_val, __beta_val)
- { }
- explicit
- beta_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Returns the @f$\alpha@f$ of the distribution.
- */
- _RealType
- alpha() const
- { return _M_param.alpha(); }
- /**
- * @brief Returns the @f$\beta@f$ of the distribution.
- */
- _RealType
- beta() const
- { return _M_param.beta(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return result_type(1); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two beta distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const beta_distribution& __d1,
- const beta_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %beta_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %beta_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::beta_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %beta_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %beta_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::beta_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two beta distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::beta_distribution<_RealType>& __d1,
- const __gnu_cxx::beta_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A multi-variate normal continuous distribution for random numbers.
- *
- * The formula for the normal probability density function is
- * @f[
- * p(\overrightarrow{x}|\overrightarrow{\mu },\Sigma) =
- * \frac{1}{\sqrt{(2\pi )^k\det(\Sigma))}}
- * e^{-\frac{1}{2}(\overrightarrow{x}-\overrightarrow{\mu})^\text{T}
- * \Sigma ^{-1}(\overrightarrow{x}-\overrightarrow{\mu})}
- * @f]
- *
- * where @f$\overrightarrow{x}@f$ and @f$\overrightarrow{\mu}@f$ are
- * vectors of dimension @f$k@f$ and @f$\Sigma@f$ is the covariance
- * matrix (which must be positive-definite).
- */
- template<std::size_t _Dimen, typename _RealType = double>
- class normal_mv_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- static_assert(_Dimen != 0, "dimension is zero");
- public:
- /** The type of the range of the distribution. */
- typedef std::array<_RealType, _Dimen> result_type;
- /** Parameter type. */
- class param_type
- {
- static constexpr size_t _M_t_size = _Dimen * (_Dimen + 1) / 2;
- public:
- typedef normal_mv_distribution<_Dimen, _RealType> distribution_type;
- friend class normal_mv_distribution<_Dimen, _RealType>;
- param_type()
- {
- std::fill(_M_mean.begin(), _M_mean.end(), _RealType(0));
- auto __it = _M_t.begin();
- for (size_t __i = 0; __i < _Dimen; ++__i)
- {
- std::fill_n(__it, __i, _RealType(0));
- __it += __i;
- *__it++ = _RealType(1);
- }
- }
- template<typename _ForwardIterator1, typename _ForwardIterator2>
- param_type(_ForwardIterator1 __meanbegin,
- _ForwardIterator1 __meanend,
- _ForwardIterator2 __varcovbegin,
- _ForwardIterator2 __varcovend)
- {
- __glibcxx_function_requires(_ForwardIteratorConcept<
- _ForwardIterator1>)
- __glibcxx_function_requires(_ForwardIteratorConcept<
- _ForwardIterator2>)
- _GLIBCXX_DEBUG_ASSERT(std::distance(__meanbegin, __meanend)
- <= _Dimen);
- const auto __dist = std::distance(__varcovbegin, __varcovend);
- _GLIBCXX_DEBUG_ASSERT(__dist == _Dimen * _Dimen
- || __dist == _Dimen * (_Dimen + 1) / 2
- || __dist == _Dimen);
- if (__dist == _Dimen * _Dimen)
- _M_init_full(__meanbegin, __meanend, __varcovbegin, __varcovend);
- else if (__dist == _Dimen * (_Dimen + 1) / 2)
- _M_init_lower(__meanbegin, __meanend, __varcovbegin, __varcovend);
- else
- _M_init_diagonal(__meanbegin, __meanend,
- __varcovbegin, __varcovend);
- }
- param_type(std::initializer_list<_RealType> __mean,
- std::initializer_list<_RealType> __varcov)
- {
- _GLIBCXX_DEBUG_ASSERT(__mean.size() <= _Dimen);
- _GLIBCXX_DEBUG_ASSERT(__varcov.size() == _Dimen * _Dimen
- || __varcov.size() == _Dimen * (_Dimen + 1) / 2
- || __varcov.size() == _Dimen);
- if (__varcov.size() == _Dimen * _Dimen)
- _M_init_full(__mean.begin(), __mean.end(),
- __varcov.begin(), __varcov.end());
- else if (__varcov.size() == _Dimen * (_Dimen + 1) / 2)
- _M_init_lower(__mean.begin(), __mean.end(),
- __varcov.begin(), __varcov.end());
- else
- _M_init_diagonal(__mean.begin(), __mean.end(),
- __varcov.begin(), __varcov.end());
- }
- std::array<_RealType, _Dimen>
- mean() const
- { return _M_mean; }
- std::array<_RealType, _M_t_size>
- varcov() const
- { return _M_t; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mean == __p2._M_mean && __p1._M_t == __p2._M_t; }
- private:
- template <typename _InputIterator1, typename _InputIterator2>
- void _M_init_full(_InputIterator1 __meanbegin,
- _InputIterator1 __meanend,
- _InputIterator2 __varcovbegin,
- _InputIterator2 __varcovend);
- template <typename _InputIterator1, typename _InputIterator2>
- void _M_init_lower(_InputIterator1 __meanbegin,
- _InputIterator1 __meanend,
- _InputIterator2 __varcovbegin,
- _InputIterator2 __varcovend);
- template <typename _InputIterator1, typename _InputIterator2>
- void _M_init_diagonal(_InputIterator1 __meanbegin,
- _InputIterator1 __meanend,
- _InputIterator2 __varbegin,
- _InputIterator2 __varend);
- std::array<_RealType, _Dimen> _M_mean;
- std::array<_RealType, _M_t_size> _M_t;
- };
- public:
- normal_mv_distribution()
- : _M_param(), _M_nd()
- { }
- template<typename _ForwardIterator1, typename _ForwardIterator2>
- normal_mv_distribution(_ForwardIterator1 __meanbegin,
- _ForwardIterator1 __meanend,
- _ForwardIterator2 __varcovbegin,
- _ForwardIterator2 __varcovend)
- : _M_param(__meanbegin, __meanend, __varcovbegin, __varcovend),
- _M_nd()
- { }
- normal_mv_distribution(std::initializer_list<_RealType> __mean,
- std::initializer_list<_RealType> __varcov)
- : _M_param(__mean, __varcov), _M_nd()
- { }
- explicit
- normal_mv_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
- /**
- * @brief Returns the mean of the distribution.
- */
- result_type
- mean() const
- { return _M_param.mean(); }
- /**
- * @brief Returns the compact form of the variance/covariance
- * matrix of the distribution.
- */
- std::array<_RealType, _Dimen * (_Dimen + 1) / 2>
- varcov() const
- { return _M_param.varcov(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { result_type __res;
- __res.fill(std::numeric_limits<_RealType>::lowest());
- return __res; }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { result_type __res;
- __res.fill(std::numeric_limits<_RealType>::max());
- return __res; }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { return this->__generate_impl(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { return this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two multi-variant normal distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- template<size_t _Dimen1, typename _RealType1>
- friend bool
- operator==(const
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __d1,
- const
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __d2);
- /**
- * @brief Inserts a %normal_mv_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %normal_mv_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<size_t _Dimen1, typename _RealType1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __x);
- /**
- * @brief Extracts a %normal_mv_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %normal_mv_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<size_t _Dimen1, typename _RealType1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::normal_mv_distribution<_Dimen1, _RealType1>&
- __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::normal_distribution<_RealType> _M_nd;
- };
- /**
- * @brief Return true if two multi-variate normal distributions are
- * different.
- */
- template<size_t _Dimen, typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
- __d1,
- const __gnu_cxx::normal_mv_distribution<_Dimen, _RealType>&
- __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A Rice continuous distribution for random numbers.
- *
- * The formula for the Rice probability density function is
- * @f[
- * p(x|\nu,\sigma) = \frac{x}{\sigma^2}
- * \exp\left(-\frac{x^2+\nu^2}{2\sigma^2}\right)
- * I_0\left(\frac{x \nu}{\sigma^2}\right)
- * @f]
- * where @f$I_0(z)@f$ is the modified Bessel function of the first kind
- * of order 0 and @f$\nu >= 0@f$ and @f$\sigma > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\sqrt{\pi/2}L_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr>
- * <tr><td>Variance</td><td>@f$2\sigma^2 + \nu^2
- * + (\pi\sigma^2/2)L^2_{1/2}(-\nu^2/2\sigma^2)@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- * where @f$L_{1/2}(x)@f$ is the Laguerre polynomial of order 1/2.
- */
- template<typename _RealType = double>
- class
- rice_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef rice_distribution<result_type> distribution_type;
- param_type(result_type __nu_val = result_type(0),
- result_type __sigma_val = result_type(1))
- : _M_nu(__nu_val), _M_sigma(__sigma_val)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_nu >= result_type(0));
- _GLIBCXX_DEBUG_ASSERT(_M_sigma > result_type(0));
- }
- result_type
- nu() const
- { return _M_nu; }
- result_type
- sigma() const
- { return _M_sigma; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_nu == __p2._M_nu
- && __p1._M_sigma == __p2._M_sigma; }
- private:
- void _M_initialize();
- result_type _M_nu;
- result_type _M_sigma;
- };
- /**
- * @brief Constructors.
- */
- explicit
- rice_distribution(result_type __nu_val = result_type(0),
- result_type __sigma_val = result_type(1))
- : _M_param(__nu_val, __sigma_val),
- _M_ndx(__nu_val, __sigma_val),
- _M_ndy(result_type(0), __sigma_val)
- { }
- explicit
- rice_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ndx(__p.nu(), __p.sigma()),
- _M_ndy(result_type(0), __p.sigma())
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_ndx.reset();
- _M_ndy.reset();
- }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- nu() const
- { return _M_param.nu(); }
- result_type
- sigma() const
- { return _M_param.sigma(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __x = this->_M_ndx(__urng);
- result_type __y = this->_M_ndy(__urng);
- #if _GLIBCXX_USE_C99_MATH_TR1
- return std::hypot(__x, __y);
- #else
- return std::sqrt(__x * __x + __y * __y);
- #endif
- }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typename std::normal_distribution<result_type>::param_type
- __px(__p.nu(), __p.sigma()), __py(result_type(0), __p.sigma());
- result_type __x = this->_M_ndx(__px, __urng);
- result_type __y = this->_M_ndy(__py, __urng);
- #if _GLIBCXX_USE_C99_MATH_TR1
- return std::hypot(__x, __y);
- #else
- return std::sqrt(__x * __x + __y * __y);
- #endif
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Rice distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const rice_distribution& __d1,
- const rice_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ndx == __d2._M_ndx
- && __d1._M_ndy == __d2._M_ndy); }
- /**
- * @brief Inserts a %rice_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %rice_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const rice_distribution<_RealType1>&);
- /**
- * @brief Extracts a %rice_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %rice_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- rice_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::normal_distribution<result_type> _M_ndx;
- std::normal_distribution<result_type> _M_ndy;
- };
- /**
- * @brief Return true if two Rice distributions are not equal.
- */
- template<typename _RealType1>
- inline bool
- operator!=(const rice_distribution<_RealType1>& __d1,
- const rice_distribution<_RealType1>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A Nakagami continuous distribution for random numbers.
- *
- * The formula for the Nakagami probability density function is
- * @f[
- * p(x|\mu,\omega) = \frac{2\mu^\mu}{\Gamma(\mu)\omega^\mu}
- * x^{2\mu-1}e^{-\mu x / \omega}
- * @f]
- * where @f$\Gamma(z)@f$ is the gamma function and @f$\mu >= 0.5@f$
- * and @f$\omega > 0@f$.
- */
- template<typename _RealType = double>
- class
- nakagami_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef nakagami_distribution<result_type> distribution_type;
- param_type(result_type __mu_val = result_type(1),
- result_type __omega_val = result_type(1))
- : _M_mu(__mu_val), _M_omega(__omega_val)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_mu >= result_type(0.5L));
- _GLIBCXX_DEBUG_ASSERT(_M_omega > result_type(0));
- }
- result_type
- mu() const
- { return _M_mu; }
- result_type
- omega() const
- { return _M_omega; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mu == __p2._M_mu
- && __p1._M_omega == __p2._M_omega; }
- private:
- void _M_initialize();
- result_type _M_mu;
- result_type _M_omega;
- };
- /**
- * @brief Constructors.
- */
- explicit
- nakagami_distribution(result_type __mu_val = result_type(1),
- result_type __omega_val = result_type(1))
- : _M_param(__mu_val, __omega_val),
- _M_gd(__mu_val, __omega_val / __mu_val)
- { }
- explicit
- nakagami_distribution(const param_type& __p)
- : _M_param(__p),
- _M_gd(__p.mu(), __p.omega() / __p.mu())
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_gd.reset(); }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- mu() const
- { return _M_param.mu(); }
- result_type
- omega() const
- { return _M_param.omega(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return std::sqrt(this->_M_gd(__urng)); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typename std::gamma_distribution<result_type>::param_type
- __pg(__p.mu(), __p.omega() / __p.mu());
- return std::sqrt(this->_M_gd(__pg, __urng));
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Nakagami distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const nakagami_distribution& __d1,
- const nakagami_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_gd == __d2._M_gd); }
- /**
- * @brief Inserts a %nakagami_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %nakagami_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const nakagami_distribution<_RealType1>&);
- /**
- * @brief Extracts a %nakagami_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %nakagami_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- nakagami_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::gamma_distribution<result_type> _M_gd;
- };
- /**
- * @brief Return true if two Nakagami distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const nakagami_distribution<_RealType>& __d1,
- const nakagami_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A Pareto continuous distribution for random numbers.
- *
- * The formula for the Pareto cumulative probability function is
- * @f[
- * P(x|\alpha,\mu) = 1 - \left(\frac{\mu}{x}\right)^\alpha
- * @f]
- * The formula for the Pareto probability density function is
- * @f[
- * p(x|\alpha,\mu) = \frac{\alpha + 1}{\mu}
- * \left(\frac{\mu}{x}\right)^{\alpha + 1}
- * @f]
- * where @f$x >= \mu@f$ and @f$\mu > 0@f$, @f$\alpha > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\alpha \mu / (\alpha - 1)@f$
- * for @f$\alpha > 1@f$</td></tr>
- * <tr><td>Variance</td><td>@f$\alpha \mu^2 / [(\alpha - 1)^2(\alpha - 2)]@f$
- * for @f$\alpha > 2@f$</td></tr>
- * <tr><td>Range</td><td>@f$[\mu, \infty)@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- pareto_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef pareto_distribution<result_type> distribution_type;
- param_type(result_type __alpha_val = result_type(1),
- result_type __mu_val = result_type(1))
- : _M_alpha(__alpha_val), _M_mu(__mu_val)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_alpha > result_type(0));
- _GLIBCXX_DEBUG_ASSERT(_M_mu > result_type(0));
- }
- result_type
- alpha() const
- { return _M_alpha; }
- result_type
- mu() const
- { return _M_mu; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_alpha == __p2._M_alpha && __p1._M_mu == __p2._M_mu; }
- private:
- void _M_initialize();
- result_type _M_alpha;
- result_type _M_mu;
- };
- /**
- * @brief Constructors.
- */
- explicit
- pareto_distribution(result_type __alpha_val = result_type(1),
- result_type __mu_val = result_type(1))
- : _M_param(__alpha_val, __mu_val),
- _M_ud()
- { }
- explicit
- pareto_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ud()
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_ud.reset();
- }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- alpha() const
- { return _M_param.alpha(); }
- result_type
- mu() const
- { return _M_param.mu(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return this->mu(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- return this->mu() * std::pow(this->_M_ud(__urng),
- -result_type(1) / this->alpha());
- }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- return __p.mu() * std::pow(this->_M_ud(__urng),
- -result_type(1) / __p.alpha());
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Pareto distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const pareto_distribution& __d1,
- const pareto_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ud == __d2._M_ud); }
- /**
- * @brief Inserts a %pareto_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %pareto_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const pareto_distribution<_RealType1>&);
- /**
- * @brief Extracts a %pareto_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %pareto_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- pareto_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::uniform_real_distribution<result_type> _M_ud;
- };
- /**
- * @brief Return true if two Pareto distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const pareto_distribution<_RealType>& __d1,
- const pareto_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A K continuous distribution for random numbers.
- *
- * The formula for the K probability density function is
- * @f[
- * p(x|\lambda, \mu, \nu) = \frac{2}{x}
- * \left(\frac{\lambda\nu x}{\mu}\right)^{\frac{\lambda + \nu}{2}}
- * \frac{1}{\Gamma(\lambda)\Gamma(\nu)}
- * K_{\nu - \lambda}\left(2\sqrt{\frac{\lambda\nu x}{\mu}}\right)
- * @f]
- * where @f$I_0(z)@f$ is the modified Bessel function of the second kind
- * of order @f$\nu - \lambda@f$ and @f$\lambda > 0@f$, @f$\mu > 0@f$
- * and @f$\nu > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\mu@f$</td></tr>
- * <tr><td>Variance</td><td>@f$\mu^2\frac{\lambda + \nu + 1}{\lambda\nu}@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- k_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef k_distribution<result_type> distribution_type;
- param_type(result_type __lambda_val = result_type(1),
- result_type __mu_val = result_type(1),
- result_type __nu_val = result_type(1))
- : _M_lambda(__lambda_val), _M_mu(__mu_val), _M_nu(__nu_val)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_lambda > result_type(0));
- _GLIBCXX_DEBUG_ASSERT(_M_mu > result_type(0));
- _GLIBCXX_DEBUG_ASSERT(_M_nu > result_type(0));
- }
- result_type
- lambda() const
- { return _M_lambda; }
- result_type
- mu() const
- { return _M_mu; }
- result_type
- nu() const
- { return _M_nu; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_lambda == __p2._M_lambda
- && __p1._M_mu == __p2._M_mu
- && __p1._M_nu == __p2._M_nu; }
- private:
- void _M_initialize();
- result_type _M_lambda;
- result_type _M_mu;
- result_type _M_nu;
- };
- /**
- * @brief Constructors.
- */
- explicit
- k_distribution(result_type __lambda_val = result_type(1),
- result_type __mu_val = result_type(1),
- result_type __nu_val = result_type(1))
- : _M_param(__lambda_val, __mu_val, __nu_val),
- _M_gd1(__lambda_val, result_type(1) / __lambda_val),
- _M_gd2(__nu_val, __mu_val / __nu_val)
- { }
- explicit
- k_distribution(const param_type& __p)
- : _M_param(__p),
- _M_gd1(__p.lambda(), result_type(1) / __p.lambda()),
- _M_gd2(__p.nu(), __p.mu() / __p.nu())
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_gd1.reset();
- _M_gd2.reset();
- }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- lambda() const
- { return _M_param.lambda(); }
- result_type
- mu() const
- { return _M_param.mu(); }
- result_type
- nu() const
- { return _M_param.nu(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator&);
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator&, const param_type&);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two K distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const k_distribution& __d1,
- const k_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_gd1 == __d2._M_gd1
- && __d1._M_gd2 == __d2._M_gd2); }
- /**
- * @brief Inserts a %k_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %k_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const k_distribution<_RealType1>&);
- /**
- * @brief Extracts a %k_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %k_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- k_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::gamma_distribution<result_type> _M_gd1;
- std::gamma_distribution<result_type> _M_gd2;
- };
- /**
- * @brief Return true if two K distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const k_distribution<_RealType>& __d1,
- const k_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief An arcsine continuous distribution for random numbers.
- *
- * The formula for the arcsine probability density function is
- * @f[
- * p(x|a,b) = \frac{1}{\pi \sqrt{(x - a)(b - x)}}
- * @f]
- * where @f$x >= a@f$ and @f$x <= b@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ (a + b) / 2 @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ (b - a)^2 / 8 @f$</td></tr>
- * <tr><td>Range</td><td>@f$[a, b]@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- arcsine_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef arcsine_distribution<result_type> distribution_type;
- param_type(result_type __a = result_type(0),
- result_type __b = result_type(1))
- : _M_a(__a), _M_b(__b)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b);
- }
- result_type
- a() const
- { return _M_a; }
- result_type
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
- private:
- void _M_initialize();
- result_type _M_a;
- result_type _M_b;
- };
- /**
- * @brief Constructors.
- */
- explicit
- arcsine_distribution(result_type __a = result_type(0),
- result_type __b = result_type(1))
- : _M_param(__a, __b),
- _M_ud(-1.5707963267948966192313216916397514L,
- +1.5707963267948966192313216916397514L)
- { }
- explicit
- arcsine_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ud(-1.5707963267948966192313216916397514L,
- +1.5707963267948966192313216916397514L)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_ud.reset(); }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- a() const
- { return _M_param.a(); }
- result_type
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return this->a(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return this->b(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- {
- result_type __x = std::sin(this->_M_ud(__urng));
- return (__x * (this->b() - this->a())
- + this->a() + this->b()) / result_type(2);
- }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- result_type __x = std::sin(this->_M_ud(__urng));
- return (__x * (__p.b() - __p.a())
- + __p.a() + __p.b()) / result_type(2);
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two arcsine distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const arcsine_distribution& __d1,
- const arcsine_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ud == __d2._M_ud); }
- /**
- * @brief Inserts a %arcsine_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %arcsine_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const arcsine_distribution<_RealType1>&);
- /**
- * @brief Extracts a %arcsine_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %arcsine_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- arcsine_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::uniform_real_distribution<result_type> _M_ud;
- };
- /**
- * @brief Return true if two arcsine distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const arcsine_distribution<_RealType>& __d1,
- const arcsine_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A Hoyt continuous distribution for random numbers.
- *
- * The formula for the Hoyt probability density function is
- * @f[
- * p(x|q,\omega) = \frac{(1 + q^2)x}{q\omega}
- * \exp\left(-\frac{(1 + q^2)^2 x^2}{4 q^2 \omega}\right)
- * I_0\left(\frac{(1 - q^4) x^2}{4 q^2 \omega}\right)
- * @f]
- * where @f$I_0(z)@f$ is the modified Bessel function of the first kind
- * of order 0 and @f$0 < q < 1@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ \sqrt{\frac{2}{\pi}} \sqrt{\frac{\omega}{1 + q^2}}
- * E(1 - q^2) @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ \omega \left(1 - \frac{2E^2(1 - q^2)}
- * {\pi (1 + q^2)}\right) @f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- * where @f$E(x)@f$ is the elliptic function of the second kind.
- */
- template<typename _RealType = double>
- class
- hoyt_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef hoyt_distribution<result_type> distribution_type;
- param_type(result_type __q = result_type(0.5L),
- result_type __omega = result_type(1))
- : _M_q(__q), _M_omega(__omega)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_q > result_type(0));
- _GLIBCXX_DEBUG_ASSERT(_M_q < result_type(1));
- }
- result_type
- q() const
- { return _M_q; }
- result_type
- omega() const
- { return _M_omega; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_q == __p2._M_q
- && __p1._M_omega == __p2._M_omega; }
- private:
- void _M_initialize();
- result_type _M_q;
- result_type _M_omega;
- };
- /**
- * @brief Constructors.
- */
- explicit
- hoyt_distribution(result_type __q = result_type(0.5L),
- result_type __omega = result_type(1))
- : _M_param(__q, __omega),
- _M_ad(result_type(0.5L) * (result_type(1) + __q * __q),
- result_type(0.5L) * (result_type(1) + __q * __q)
- / (__q * __q)),
- _M_ed(result_type(1))
- { }
- explicit
- hoyt_distribution(const param_type& __p)
- : _M_param(__p),
- _M_ad(result_type(0.5L) * (result_type(1) + __p.q() * __p.q()),
- result_type(0.5L) * (result_type(1) + __p.q() * __p.q())
- / (__p.q() * __p.q())),
- _M_ed(result_type(1))
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_ad.reset();
- _M_ed.reset();
- }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- q() const
- { return _M_param.q(); }
- result_type
- omega() const
- { return _M_param.omega(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng);
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Hoyt distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const hoyt_distribution& __d1,
- const hoyt_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_ad == __d2._M_ad
- && __d1._M_ed == __d2._M_ed); }
- /**
- * @brief Inserts a %hoyt_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %hoyt_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const hoyt_distribution<_RealType1>&);
- /**
- * @brief Extracts a %hoyt_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %hoyt_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- hoyt_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- __gnu_cxx::arcsine_distribution<result_type> _M_ad;
- std::exponential_distribution<result_type> _M_ed;
- };
- /**
- * @brief Return true if two Hoyt distributions are not equal.
- */
- template<typename _RealType>
- inline bool
- operator!=(const hoyt_distribution<_RealType>& __d1,
- const hoyt_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A triangular distribution for random numbers.
- *
- * The formula for the triangular probability density function is
- * @f[
- * / 0 for x < a
- * p(x|a,b,c) = | \frac{2(x-a)}{(c-a)(b-a)} for a <= x <= b
- * | \frac{2(c-x)}{(c-a)(c-b)} for b < x <= c
- * \ 0 for c < x
- * @f]
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ \frac{a+b+c}{2} @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ \frac{a^2+b^2+c^2-ab-ac-bc}
- * {18}@f$</td></tr>
- * <tr><td>Range</td><td>@f$[a, c]@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class triangular_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- friend class triangular_distribution<_RealType>;
- explicit
- param_type(_RealType __a = _RealType(0),
- _RealType __b = _RealType(0.5),
- _RealType __c = _RealType(1))
- : _M_a(__a), _M_b(__b), _M_c(__c)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b);
- _GLIBCXX_DEBUG_ASSERT(_M_b <= _M_c);
- _GLIBCXX_DEBUG_ASSERT(_M_a < _M_c);
- _M_r_ab = (_M_b - _M_a) / (_M_c - _M_a);
- _M_f_ab_ac = (_M_b - _M_a) * (_M_c - _M_a);
- _M_f_bc_ac = (_M_c - _M_b) * (_M_c - _M_a);
- }
- _RealType
- a() const
- { return _M_a; }
- _RealType
- b() const
- { return _M_b; }
- _RealType
- c() const
- { return _M_c; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b
- && __p1._M_c == __p2._M_c); }
- private:
- _RealType _M_a;
- _RealType _M_b;
- _RealType _M_c;
- _RealType _M_r_ab;
- _RealType _M_f_ab_ac;
- _RealType _M_f_bc_ac;
- };
- /**
- * @brief Constructs a triangle distribution with parameters
- * @f$ a @f$, @f$ b @f$ and @f$ c @f$.
- */
- explicit
- triangular_distribution(result_type __a = result_type(0),
- result_type __b = result_type(0.5),
- result_type __c = result_type(1))
- : _M_param(__a, __b, __c)
- { }
- explicit
- triangular_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Returns the @f$ a @f$ of the distribution.
- */
- result_type
- a() const
- { return _M_param.a(); }
- /**
- * @brief Returns the @f$ b @f$ of the distribution.
- */
- result_type
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the @f$ c @f$ of the distribution.
- */
- result_type
- c() const
- { return _M_param.c(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return _M_param._M_a; }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return _M_param._M_c; }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- std::__detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- result_type __rnd = __aurng();
- if (__rnd <= __p._M_r_ab)
- return __p.a() + std::sqrt(__rnd * __p._M_f_ab_ac);
- else
- return __p.c() - std::sqrt((result_type(1) - __rnd)
- * __p._M_f_bc_ac);
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two triangle distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const triangular_distribution& __d1,
- const triangular_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %triangular_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %triangular_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::triangular_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %triangular_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %triangular_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::triangular_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two triangle distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::triangular_distribution<_RealType>& __d1,
- const __gnu_cxx::triangular_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A von Mises distribution for random numbers.
- *
- * The formula for the von Mises probability density function is
- * @f[
- * p(x|\mu,\kappa) = \frac{e^{\kappa \cos(x-\mu)}}
- * {2\pi I_0(\kappa)}
- * @f]
- *
- * The generating functions use the method according to:
- *
- * D. J. Best and N. I. Fisher, 1979. "Efficient Simulation of the
- * von Mises Distribution", Journal of the Royal Statistical Society.
- * Series C (Applied Statistics), Vol. 28, No. 2, pp. 152-157.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ \mu @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ 1-I_1(\kappa)/I_0(\kappa) @f$</td></tr>
- * <tr><td>Range</td><td>@f$[-\pi, \pi]@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class von_mises_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- friend class von_mises_distribution<_RealType>;
- explicit
- param_type(_RealType __mu = _RealType(0),
- _RealType __kappa = _RealType(1))
- : _M_mu(__mu), _M_kappa(__kappa)
- {
- const _RealType __pi = __gnu_cxx::__math_constants<_RealType>::__pi;
- _GLIBCXX_DEBUG_ASSERT(_M_mu >= -__pi && _M_mu <= __pi);
- _GLIBCXX_DEBUG_ASSERT(_M_kappa >= _RealType(0));
- auto __tau = std::sqrt(_RealType(4) * _M_kappa * _M_kappa
- + _RealType(1)) + _RealType(1);
- auto __rho = ((__tau - std::sqrt(_RealType(2) * __tau))
- / (_RealType(2) * _M_kappa));
- _M_r = (_RealType(1) + __rho * __rho) / (_RealType(2) * __rho);
- }
- _RealType
- mu() const
- { return _M_mu; }
- _RealType
- kappa() const
- { return _M_kappa; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_mu == __p2._M_mu
- && __p1._M_kappa == __p2._M_kappa); }
- private:
- _RealType _M_mu;
- _RealType _M_kappa;
- _RealType _M_r;
- };
- /**
- * @brief Constructs a von Mises distribution with parameters
- * @f$\mu@f$ and @f$\kappa@f$.
- */
- explicit
- von_mises_distribution(result_type __mu = result_type(0),
- result_type __kappa = result_type(1))
- : _M_param(__mu, __kappa)
- { }
- explicit
- von_mises_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Returns the @f$ \mu @f$ of the distribution.
- */
- result_type
- mu() const
- { return _M_param.mu(); }
- /**
- * @brief Returns the @f$ \kappa @f$ of the distribution.
- */
- result_type
- kappa() const
- { return _M_param.kappa(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- return -__gnu_cxx::__math_constants<result_type>::__pi;
- }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return __gnu_cxx::__math_constants<result_type>::__pi;
- }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two von Mises distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const von_mises_distribution& __d1,
- const von_mises_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %von_mises_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %von_mises_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::von_mises_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %von_mises_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %von_mises_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::von_mises_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two von Mises distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::von_mises_distribution<_RealType>& __d1,
- const __gnu_cxx::von_mises_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A discrete hypergeometric random number distribution.
- *
- * The hypergeometric distribution is a discrete probability distribution
- * that describes the probability of @p k successes in @p n draws @a without
- * replacement from a finite population of size @p N containing exactly @p K
- * successes.
- *
- * The formula for the hypergeometric probability density function is
- * @f[
- * p(k|N,K,n) = \frac{\binom{K}{k} \binom{N-K}{n-k}}{\binom{N}{n}}
- * @f]
- * where @f$N@f$ is the total population of the distribution,
- * @f$K@f$ is the total population of the distribution.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$ n\frac{K}{N} @f$</td></tr>
- * <tr><td>Variance</td><td>@f$ n\frac{K}{N}\frac{N-K}{N}\frac{N-n}{N-1}
- * @f$</td></tr>
- * <tr><td>Range</td><td>@f$[max(0, n+K-N), min(K, n)]@f$</td></tr>
- * </table>
- */
- template<typename _UIntType = unsigned int>
- class hypergeometric_distribution
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _UIntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef hypergeometric_distribution<_UIntType> distribution_type;
- friend class hypergeometric_distribution<_UIntType>;
- explicit
- param_type(result_type __N = 10, result_type __K = 5,
- result_type __n = 1)
- : _M_N{__N}, _M_K{__K}, _M_n{__n}
- {
- _GLIBCXX_DEBUG_ASSERT(_M_N >= _M_K);
- _GLIBCXX_DEBUG_ASSERT(_M_N >= _M_n);
- }
- result_type
- total_size() const
- { return _M_N; }
- result_type
- successful_size() const
- { return _M_K; }
- result_type
- unsuccessful_size() const
- { return _M_N - _M_K; }
- result_type
- total_draws() const
- { return _M_n; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_N == __p2._M_N)
- && (__p1._M_K == __p2._M_K)
- && (__p1._M_n == __p2._M_n); }
- private:
- result_type _M_N;
- result_type _M_K;
- result_type _M_n;
- };
- // constructors and member function
- explicit
- hypergeometric_distribution(result_type __N = 10, result_type __K = 5,
- result_type __n = 1)
- : _M_param{__N, __K, __n}
- { }
- explicit
- hypergeometric_distribution(const param_type& __p)
- : _M_param{__p}
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Returns the distribution parameter @p N,
- * the total number of items.
- */
- result_type
- total_size() const
- { return this->_M_param.total_size(); }
- /**
- * @brief Returns the distribution parameter @p K,
- * the total number of successful items.
- */
- result_type
- successful_size() const
- { return this->_M_param.successful_size(); }
- /**
- * @brief Returns the total number of unsuccessful items @f$ N - K @f$.
- */
- result_type
- unsuccessful_size() const
- { return this->_M_param.unsuccessful_size(); }
- /**
- * @brief Returns the distribution parameter @p n,
- * the total number of draws.
- */
- result_type
- total_draws() const
- { return this->_M_param.total_draws(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return this->_M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { this->_M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- using _IntType = typename std::make_signed<result_type>::type;
- return static_cast<result_type>(std::max(static_cast<_IntType>(0),
- static_cast<_IntType>(this->total_draws()
- - this->unsuccessful_size())));
- }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::min(this->successful_size(), this->total_draws()); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, this->_M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->_M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two hypergeometric distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const hypergeometric_distribution& __d1,
- const hypergeometric_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %hypergeometric_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %hypergeometric_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _UIntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::hypergeometric_distribution<_UIntType1>&
- __x);
- /**
- * @brief Extracts a %hypergeometric_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %hypergeometric_distribution random number generator
- * distribution.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _UIntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::hypergeometric_distribution<_UIntType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two hypergeometric distributions are different.
- */
- template<typename _UIntType>
- inline bool
- operator!=(const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d1,
- const __gnu_cxx::hypergeometric_distribution<_UIntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A logistic continuous distribution for random numbers.
- *
- * The formula for the logistic probability density function is
- * @f[
- * p(x|\a,\b) = \frac{e^{(x - a)/b}}{b[1 + e^{(x - a)/b}]^2}
- * @f]
- * where @f$b > 0@f$.
- *
- * The formula for the logistic probability function is
- * @f[
- * cdf(x|\a,\b) = \frac{e^{(x - a)/b}}{1 + e^{(x - a)/b}}
- * @f]
- * where @f$b > 0@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$a@f$</td></tr>
- * <tr><td>Variance</td><td>@f$b^2\pi^2/3@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty)@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class
- logistic_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef logistic_distribution<result_type> distribution_type;
- param_type(result_type __a = result_type(0),
- result_type __b = result_type(1))
- : _M_a(__a), _M_b(__b)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_b > result_type(0));
- }
- result_type
- a() const
- { return _M_a; }
- result_type
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a
- && __p1._M_b == __p2._M_b; }
- private:
- void _M_initialize();
- result_type _M_a;
- result_type _M_b;
- };
- /**
- * @brief Constructors.
- */
- explicit
- logistic_distribution(result_type __a = result_type(0),
- result_type __b = result_type(1))
- : _M_param(__a, __b)
- { }
- explicit
- logistic_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Return the parameters of the distribution.
- */
- result_type
- a() const
- { return _M_param.a(); }
- result_type
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return -std::numeric_limits<result_type>::max(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, this->_M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator&,
- const param_type&);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->param()); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two logistic distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- template<typename _RealType1>
- friend bool
- operator==(const logistic_distribution<_RealType1>& __d1,
- const logistic_distribution<_RealType1>& __d2)
- { return __d1.param() == __d2.param(); }
- /**
- * @brief Inserts a %logistic_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %logistic_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const logistic_distribution<_RealType1>&);
- /**
- * @brief Extracts a %logistic_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %logistic_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- logistic_distribution<_RealType1>&);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two logistic distributions are not equal.
- */
- template<typename _RealType1>
- inline bool
- operator!=(const logistic_distribution<_RealType1>& __d1,
- const logistic_distribution<_RealType1>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A distribution for random coordinates on a unit sphere.
- *
- * The method used in the generation function is attributed by Donald Knuth
- * to G. W. Brown, Modern Mathematics for the Engineer (1956).
- */
- template<std::size_t _Dimen, typename _RealType = double>
- class uniform_on_sphere_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- static_assert(_Dimen != 0, "dimension is zero");
- public:
- /** The type of the range of the distribution. */
- typedef std::array<_RealType, _Dimen> result_type;
- /** Parameter type. */
- struct param_type
- {
- explicit
- param_type()
- { }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return true; }
- };
- /**
- * @brief Constructs a uniform on sphere distribution.
- */
- explicit
- uniform_on_sphere_distribution()
- : _M_param(), _M_nd()
- { }
- explicit
- uniform_on_sphere_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- * This function makes no sense for this distribution.
- */
- result_type
- min() const
- {
- result_type __res;
- __res.fill(0);
- return __res;
- }
- /**
- * @brief Returns the least upper bound value of the distribution.
- * This function makes no sense for this distribution.
- */
- result_type
- max() const
- {
- result_type __res;
- __res.fill(0);
- return __res;
- }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, this->param()); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two uniform on sphere distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const uniform_on_sphere_distribution& __d1,
- const uniform_on_sphere_distribution& __d2)
- { return __d1._M_nd == __d2._M_nd; }
- /**
- * @brief Inserts a %uniform_on_sphere_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_on_sphere_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<size_t _Dimen1, typename _RealType1, typename _CharT,
- typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const __gnu_cxx::uniform_on_sphere_distribution<_Dimen1,
- _RealType1>&
- __x);
- /**
- * @brief Extracts a %uniform_on_sphere_distribution random number
- * distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_on_sphere_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<std::size_t _Dimen1, typename _RealType1, typename _CharT,
- typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- __gnu_cxx::uniform_on_sphere_distribution<_Dimen1,
- _RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::normal_distribution<_RealType> _M_nd;
- };
- /**
- * @brief Return true if two uniform on sphere distributions are different.
- */
- template<std::size_t _Dimen, typename _RealType>
- inline bool
- operator!=(const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
- _RealType>& __d1,
- const __gnu_cxx::uniform_on_sphere_distribution<_Dimen,
- _RealType>& __d2)
- { return !(__d1 == __d2); }
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace __gnu_cxx
- #include "ext/opt_random.h"
- #include "random.tcc"
- #endif // _GLIBCXX_USE_C99_STDINT_TR1
- #endif // C++11
- #endif // _EXT_RANDOM
|