12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068 |
- // random number generation -*- C++ -*-
- // Copyright (C) 2009-2015 Free Software Foundation, Inc.
- //
- // This file is part of the GNU ISO C++ Library. This library is free
- // software; you can redistribute it and/or modify it under the
- // terms of the GNU General Public License as published by the
- // Free Software Foundation; either version 3, or (at your option)
- // any later version.
- // This library is distributed in the hope that it will be useful,
- // but WITHOUT ANY WARRANTY; without even the implied warranty of
- // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- // GNU General Public License for more details.
- // Under Section 7 of GPL version 3, you are granted additional
- // permissions described in the GCC Runtime Library Exception, version
- // 3.1, as published by the Free Software Foundation.
- // You should have received a copy of the GNU General Public License and
- // a copy of the GCC Runtime Library Exception along with this program;
- // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
- // <http://www.gnu.org/licenses/>.
- /**
- * @file bits/random.h
- * This is an internal header file, included by other library headers.
- * Do not attempt to use it directly. @headername{random}
- */
- #ifndef _RANDOM_H
- #define _RANDOM_H 1
- #include <vector>
- namespace std _GLIBCXX_VISIBILITY(default)
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- // [26.4] Random number generation
- /**
- * @defgroup random Random Number Generation
- * @ingroup numerics
- *
- * A facility for generating random numbers on selected distributions.
- * @{
- */
- /**
- * @brief A function template for converting the output of a (integral)
- * uniform random number generator to a floatng point result in the range
- * [0-1).
- */
- template<typename _RealType, size_t __bits,
- typename _UniformRandomNumberGenerator>
- _RealType
- generate_canonical(_UniformRandomNumberGenerator& __g);
- _GLIBCXX_END_NAMESPACE_VERSION
- /*
- * Implementation-space details.
- */
- namespace __detail
- {
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- template<typename _UIntType, size_t __w,
- bool = __w < static_cast<size_t>
- (std::numeric_limits<_UIntType>::digits)>
- struct _Shift
- { static const _UIntType __value = 0; };
- template<typename _UIntType, size_t __w>
- struct _Shift<_UIntType, __w, true>
- { static const _UIntType __value = _UIntType(1) << __w; };
- template<int __s,
- int __which = ((__s <= __CHAR_BIT__ * sizeof (int))
- + (__s <= __CHAR_BIT__ * sizeof (long))
- + (__s <= __CHAR_BIT__ * sizeof (long long))
- /* assume long long no bigger than __int128 */
- + (__s <= 128))>
- struct _Select_uint_least_t
- {
- static_assert(__which < 0, /* needs to be dependent */
- "sorry, would be too much trouble for a slow result");
- };
- template<int __s>
- struct _Select_uint_least_t<__s, 4>
- { typedef unsigned int type; };
- template<int __s>
- struct _Select_uint_least_t<__s, 3>
- { typedef unsigned long type; };
- template<int __s>
- struct _Select_uint_least_t<__s, 2>
- { typedef unsigned long long type; };
- #ifdef _GLIBCXX_USE_INT128
- template<int __s>
- struct _Select_uint_least_t<__s, 1>
- { typedef unsigned __int128 type; };
- #endif
- // Assume a != 0, a < m, c < m, x < m.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c,
- bool __big_enough = (!(__m & (__m - 1))
- || (_Tp(-1) - __c) / __a >= __m - 1),
- bool __schrage_ok = __m % __a < __m / __a>
- struct _Mod
- {
- typedef typename _Select_uint_least_t<std::__lg(__a)
- + std::__lg(__m) + 2>::type _Tp2;
- static _Tp
- __calc(_Tp __x)
- { return static_cast<_Tp>((_Tp2(__a) * __x + __c) % __m); }
- };
- // Schrage.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c>
- struct _Mod<_Tp, __m, __a, __c, false, true>
- {
- static _Tp
- __calc(_Tp __x);
- };
- // Special cases:
- // - for m == 2^n or m == 0, unsigned integer overflow is safe.
- // - a * (m - 1) + c fits in _Tp, there is no overflow.
- template<typename _Tp, _Tp __m, _Tp __a, _Tp __c, bool __s>
- struct _Mod<_Tp, __m, __a, __c, true, __s>
- {
- static _Tp
- __calc(_Tp __x)
- {
- _Tp __res = __a * __x + __c;
- if (__m)
- __res %= __m;
- return __res;
- }
- };
- template<typename _Tp, _Tp __m, _Tp __a = 1, _Tp __c = 0>
- inline _Tp
- __mod(_Tp __x)
- { return _Mod<_Tp, __m, __a, __c>::__calc(__x); }
- /* Determine whether number is a power of 2. */
- template<typename _Tp>
- inline bool
- _Power_of_2(_Tp __x)
- {
- return ((__x - 1) & __x) == 0;
- };
- /*
- * An adaptor class for converting the output of any Generator into
- * the input for a specific Distribution.
- */
- template<typename _Engine, typename _DInputType>
- struct _Adaptor
- {
- static_assert(std::is_floating_point<_DInputType>::value,
- "template argument not a floating point type");
- public:
- _Adaptor(_Engine& __g)
- : _M_g(__g) { }
- _DInputType
- min() const
- { return _DInputType(0); }
- _DInputType
- max() const
- { return _DInputType(1); }
- /*
- * Converts a value generated by the adapted random number generator
- * into a value in the input domain for the dependent random number
- * distribution.
- */
- _DInputType
- operator()()
- {
- return std::generate_canonical<_DInputType,
- std::numeric_limits<_DInputType>::digits,
- _Engine>(_M_g);
- }
- private:
- _Engine& _M_g;
- };
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace __detail
- _GLIBCXX_BEGIN_NAMESPACE_VERSION
- /**
- * @addtogroup random_generators Random Number Generators
- * @ingroup random
- *
- * These classes define objects which provide random or pseudorandom
- * numbers, either from a discrete or a continuous interval. The
- * random number generator supplied as a part of this library are
- * all uniform random number generators which provide a sequence of
- * random number uniformly distributed over their range.
- *
- * A number generator is a function object with an operator() that
- * takes zero arguments and returns a number.
- *
- * A compliant random number generator must satisfy the following
- * requirements. <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Random Number Generator Requirements</caption>
- * <tr><td>To be documented.</td></tr> </table>
- *
- * @{
- */
- /**
- * @brief A model of a linear congruential random number generator.
- *
- * A random number generator that produces pseudorandom numbers via
- * linear function:
- * @f[
- * x_{i+1}\leftarrow(ax_{i} + c) \bmod m
- * @f]
- *
- * The template parameter @p _UIntType must be an unsigned integral type
- * large enough to store values up to (__m-1). If the template parameter
- * @p __m is 0, the modulus @p __m used is
- * std::numeric_limits<_UIntType>::max() plus 1. Otherwise, the template
- * parameters @p __a and @p __c must be less than @p __m.
- *
- * The size of the state is @f$1@f$.
- */
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- class linear_congruential_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(__m == 0u || (__a < __m && __c < __m),
- "template argument substituting __m out of bounds");
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
- /** The multiplier. */
- static constexpr result_type multiplier = __a;
- /** An increment. */
- static constexpr result_type increment = __c;
- /** The modulus. */
- static constexpr result_type modulus = __m;
- static constexpr result_type default_seed = 1u;
- /**
- * @brief Constructs a %linear_congruential_engine random number
- * generator engine with seed @p __s. The default seed value
- * is 1.
- *
- * @param __s The initial seed value.
- */
- explicit
- linear_congruential_engine(result_type __s = default_seed)
- { seed(__s); }
- /**
- * @brief Constructs a %linear_congruential_engine random number
- * generator engine seeded from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq, linear_congruential_engine>::value>
- ::type>
- explicit
- linear_congruential_engine(_Sseq& __q)
- { seed(__q); }
- /**
- * @brief Reseeds the %linear_congruential_engine random number generator
- * engine sequence to the seed @p __s.
- *
- * @param __s The new seed.
- */
- void
- seed(result_type __s = default_seed);
- /**
- * @brief Reseeds the %linear_congruential_engine random number generator
- * engine
- * sequence using values from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq>
- typename std::enable_if<std::is_class<_Sseq>::value>::type
- seed(_Sseq& __q);
- /**
- * @brief Gets the smallest possible value in the output range.
- *
- * The minimum depends on the @p __c parameter: if it is zero, the
- * minimum generated must be > 0, otherwise 0 is allowed.
- */
- static constexpr result_type
- min()
- { return __c == 0u ? 1u : 0u; }
- /**
- * @brief Gets the largest possible value in the output range.
- */
- static constexpr result_type
- max()
- { return __m - 1u; }
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
- /**
- * @brief Gets the next random number in the sequence.
- */
- result_type
- operator()()
- {
- _M_x = __detail::__mod<_UIntType, __m, __a, __c>(_M_x);
- return _M_x;
- }
- /**
- * @brief Compares two linear congruential random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A linear congruential random number generator object.
- * @param __rhs Another linear congruential random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const linear_congruential_engine& __lhs,
- const linear_congruential_engine& __rhs)
- { return __lhs._M_x == __rhs._M_x; }
- /**
- * @brief Writes the textual representation of the state x(i) of x to
- * @p __os.
- *
- * @param __os The output stream.
- * @param __lcr A % linear_congruential_engine random number generator.
- * @returns __os.
- */
- template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
- _UIntType1 __m1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::linear_congruential_engine<_UIntType1,
- __a1, __c1, __m1>& __lcr);
- /**
- * @brief Sets the state of the engine by reading its textual
- * representation from @p __is.
- *
- * The textual representation must have been previously written using
- * an output stream whose imbued locale and whose type's template
- * specialization arguments _CharT and _Traits were the same as those
- * of @p __is.
- *
- * @param __is The input stream.
- * @param __lcr A % linear_congruential_engine random number generator.
- * @returns __is.
- */
- template<typename _UIntType1, _UIntType1 __a1, _UIntType1 __c1,
- _UIntType1 __m1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::linear_congruential_engine<_UIntType1, __a1,
- __c1, __m1>& __lcr);
- private:
- _UIntType _M_x;
- };
- /**
- * @brief Compares two linear congruential random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A linear congruential random number generator object.
- * @param __rhs Another linear congruential random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _UIntType, _UIntType __a, _UIntType __c, _UIntType __m>
- inline bool
- operator!=(const std::linear_congruential_engine<_UIntType, __a,
- __c, __m>& __lhs,
- const std::linear_congruential_engine<_UIntType, __a,
- __c, __m>& __rhs)
- { return !(__lhs == __rhs); }
- /**
- * A generalized feedback shift register discrete random number generator.
- *
- * This algorithm avoids multiplication and division and is designed to be
- * friendly to a pipelined architecture. If the parameters are chosen
- * correctly, this generator will produce numbers with a very long period and
- * fairly good apparent entropy, although still not cryptographically strong.
- *
- * The best way to use this generator is with the predefined mt19937 class.
- *
- * This algorithm was originally invented by Makoto Matsumoto and
- * Takuji Nishimura.
- *
- * @tparam __w Word size, the number of bits in each element of
- * the state vector.
- * @tparam __n The degree of recursion.
- * @tparam __m The period parameter.
- * @tparam __r The separation point bit index.
- * @tparam __a The last row of the twist matrix.
- * @tparam __u The first right-shift tempering matrix parameter.
- * @tparam __d The first right-shift tempering matrix mask.
- * @tparam __s The first left-shift tempering matrix parameter.
- * @tparam __b The first left-shift tempering matrix mask.
- * @tparam __t The second left-shift tempering matrix parameter.
- * @tparam __c The second left-shift tempering matrix mask.
- * @tparam __l The second right-shift tempering matrix parameter.
- * @tparam __f Initialization multiplier.
- */
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t,
- _UIntType __c, size_t __l, _UIntType __f>
- class mersenne_twister_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(1u <= __m && __m <= __n,
- "template argument substituting __m out of bounds");
- static_assert(__r <= __w, "template argument substituting "
- "__r out of bound");
- static_assert(__u <= __w, "template argument substituting "
- "__u out of bound");
- static_assert(__s <= __w, "template argument substituting "
- "__s out of bound");
- static_assert(__t <= __w, "template argument substituting "
- "__t out of bound");
- static_assert(__l <= __w, "template argument substituting "
- "__l out of bound");
- static_assert(__w <= std::numeric_limits<_UIntType>::digits,
- "template argument substituting __w out of bound");
- static_assert(__a <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __a out of bound");
- static_assert(__b <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __b out of bound");
- static_assert(__c <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __c out of bound");
- static_assert(__d <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __d out of bound");
- static_assert(__f <= (__detail::_Shift<_UIntType, __w>::__value - 1),
- "template argument substituting __f out of bound");
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
- // parameter values
- static constexpr size_t word_size = __w;
- static constexpr size_t state_size = __n;
- static constexpr size_t shift_size = __m;
- static constexpr size_t mask_bits = __r;
- static constexpr result_type xor_mask = __a;
- static constexpr size_t tempering_u = __u;
- static constexpr result_type tempering_d = __d;
- static constexpr size_t tempering_s = __s;
- static constexpr result_type tempering_b = __b;
- static constexpr size_t tempering_t = __t;
- static constexpr result_type tempering_c = __c;
- static constexpr size_t tempering_l = __l;
- static constexpr result_type initialization_multiplier = __f;
- static constexpr result_type default_seed = 5489u;
- // constructors and member function
- explicit
- mersenne_twister_engine(result_type __sd = default_seed)
- { seed(__sd); }
- /**
- * @brief Constructs a %mersenne_twister_engine random number generator
- * engine seeded from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq, mersenne_twister_engine>::value>
- ::type>
- explicit
- mersenne_twister_engine(_Sseq& __q)
- { seed(__q); }
- void
- seed(result_type __sd = default_seed);
- template<typename _Sseq>
- typename std::enable_if<std::is_class<_Sseq>::value>::type
- seed(_Sseq& __q);
- /**
- * @brief Gets the smallest possible value in the output range.
- */
- static constexpr result_type
- min()
- { return 0; };
- /**
- * @brief Gets the largest possible value in the output range.
- */
- static constexpr result_type
- max()
- { return __detail::_Shift<_UIntType, __w>::__value - 1; }
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z);
- result_type
- operator()();
- /**
- * @brief Compares two % mersenne_twister_engine random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A % mersenne_twister_engine random number generator
- * object.
- * @param __rhs Another % mersenne_twister_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const mersenne_twister_engine& __lhs,
- const mersenne_twister_engine& __rhs)
- { return (std::equal(__lhs._M_x, __lhs._M_x + state_size, __rhs._M_x)
- && __lhs._M_p == __rhs._M_p); }
- /**
- * @brief Inserts the current state of a % mersenne_twister_engine
- * random number generator engine @p __x into the output stream
- * @p __os.
- *
- * @param __os An output stream.
- * @param __x A % mersenne_twister_engine random number generator
- * engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _UIntType1,
- size_t __w1, size_t __n1,
- size_t __m1, size_t __r1,
- _UIntType1 __a1, size_t __u1,
- _UIntType1 __d1, size_t __s1,
- _UIntType1 __b1, size_t __t1,
- _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::mersenne_twister_engine<_UIntType1, __w1, __n1,
- __m1, __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
- __l1, __f1>& __x);
- /**
- * @brief Extracts the current state of a % mersenne_twister_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A % mersenne_twister_engine random number generator
- * engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _UIntType1,
- size_t __w1, size_t __n1,
- size_t __m1, size_t __r1,
- _UIntType1 __a1, size_t __u1,
- _UIntType1 __d1, size_t __s1,
- _UIntType1 __b1, size_t __t1,
- _UIntType1 __c1, size_t __l1, _UIntType1 __f1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::mersenne_twister_engine<_UIntType1, __w1, __n1, __m1,
- __r1, __a1, __u1, __d1, __s1, __b1, __t1, __c1,
- __l1, __f1>& __x);
- private:
- void _M_gen_rand();
- _UIntType _M_x[state_size];
- size_t _M_p;
- };
- /**
- * @brief Compares two % mersenne_twister_engine random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A % mersenne_twister_engine random number generator
- * object.
- * @param __rhs Another % mersenne_twister_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _UIntType, size_t __w,
- size_t __n, size_t __m, size_t __r,
- _UIntType __a, size_t __u, _UIntType __d, size_t __s,
- _UIntType __b, size_t __t,
- _UIntType __c, size_t __l, _UIntType __f>
- inline bool
- operator!=(const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
- __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __lhs,
- const std::mersenne_twister_engine<_UIntType, __w, __n, __m,
- __r, __a, __u, __d, __s, __b, __t, __c, __l, __f>& __rhs)
- { return !(__lhs == __rhs); }
- /**
- * @brief The Marsaglia-Zaman generator.
- *
- * This is a model of a Generalized Fibonacci discrete random number
- * generator, sometimes referred to as the SWC generator.
- *
- * A discrete random number generator that produces pseudorandom
- * numbers using:
- * @f[
- * x_{i}\leftarrow(x_{i - s} - x_{i - r} - carry_{i-1}) \bmod m
- * @f]
- *
- * The size of the state is @f$r@f$
- * and the maximum period of the generator is @f$(m^r - m^s - 1)@f$.
- */
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- class subtract_with_carry_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(0u < __s && __s < __r,
- "template argument substituting __s out of bounds");
- static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
- "template argument substituting __w out of bounds");
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
- // parameter values
- static constexpr size_t word_size = __w;
- static constexpr size_t short_lag = __s;
- static constexpr size_t long_lag = __r;
- static constexpr result_type default_seed = 19780503u;
- /**
- * @brief Constructs an explicitly seeded % subtract_with_carry_engine
- * random number generator.
- */
- explicit
- subtract_with_carry_engine(result_type __sd = default_seed)
- { seed(__sd); }
- /**
- * @brief Constructs a %subtract_with_carry_engine random number engine
- * seeded from the seed sequence @p __q.
- *
- * @param __q the seed sequence.
- */
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq, subtract_with_carry_engine>::value>
- ::type>
- explicit
- subtract_with_carry_engine(_Sseq& __q)
- { seed(__q); }
- /**
- * @brief Seeds the initial state @f$x_0@f$ of the random number
- * generator.
- *
- * N1688[4.19] modifies this as follows. If @p __value == 0,
- * sets value to 19780503. In any case, with a linear
- * congruential generator lcg(i) having parameters @f$ m_{lcg} =
- * 2147483563, a_{lcg} = 40014, c_{lcg} = 0, and lcg(0) = value
- * @f$, sets @f$ x_{-r} \dots x_{-1} @f$ to @f$ lcg(1) \bmod m
- * \dots lcg(r) \bmod m @f$ respectively. If @f$ x_{-1} = 0 @f$
- * set carry to 1, otherwise sets carry to 0.
- */
- void
- seed(result_type __sd = default_seed);
- /**
- * @brief Seeds the initial state @f$x_0@f$ of the
- * % subtract_with_carry_engine random number generator.
- */
- template<typename _Sseq>
- typename std::enable_if<std::is_class<_Sseq>::value>::type
- seed(_Sseq& __q);
- /**
- * @brief Gets the inclusive minimum value of the range of random
- * integers returned by this generator.
- */
- static constexpr result_type
- min()
- { return 0; }
- /**
- * @brief Gets the inclusive maximum value of the range of random
- * integers returned by this generator.
- */
- static constexpr result_type
- max()
- { return __detail::_Shift<_UIntType, __w>::__value - 1; }
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
- /**
- * @brief Gets the next random number in the sequence.
- */
- result_type
- operator()();
- /**
- * @brief Compares two % subtract_with_carry_engine random number
- * generator objects of the same type for equality.
- *
- * @param __lhs A % subtract_with_carry_engine random number generator
- * object.
- * @param __rhs Another % subtract_with_carry_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const subtract_with_carry_engine& __lhs,
- const subtract_with_carry_engine& __rhs)
- { return (std::equal(__lhs._M_x, __lhs._M_x + long_lag, __rhs._M_x)
- && __lhs._M_carry == __rhs._M_carry
- && __lhs._M_p == __rhs._M_p); }
- /**
- * @brief Inserts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x into the output stream
- * @p __os.
- *
- * @param __os An output stream.
- * @param __x A % subtract_with_carry_engine random number generator
- * engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::subtract_with_carry_engine<_UIntType1, __w1,
- __s1, __r1>& __x);
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A % subtract_with_carry_engine random number generator
- * engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _UIntType1, size_t __w1, size_t __s1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::subtract_with_carry_engine<_UIntType1, __w1,
- __s1, __r1>& __x);
- private:
- /// The state of the generator. This is a ring buffer.
- _UIntType _M_x[long_lag];
- _UIntType _M_carry; ///< The carry
- size_t _M_p; ///< Current index of x(i - r).
- };
- /**
- * @brief Compares two % subtract_with_carry_engine random number
- * generator objects of the same type for inequality.
- *
- * @param __lhs A % subtract_with_carry_engine random number generator
- * object.
- * @param __rhs Another % subtract_with_carry_engine random number
- * generator object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _UIntType, size_t __w, size_t __s, size_t __r>
- inline bool
- operator!=(const std::subtract_with_carry_engine<_UIntType, __w,
- __s, __r>& __lhs,
- const std::subtract_with_carry_engine<_UIntType, __w,
- __s, __r>& __rhs)
- { return !(__lhs == __rhs); }
- /**
- * Produces random numbers from some base engine by discarding blocks of
- * data.
- *
- * 0 <= @p __r <= @p __p
- */
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- class discard_block_engine
- {
- static_assert(1 <= __r && __r <= __p,
- "template argument substituting __r out of bounds");
- public:
- /** The type of the generated random value. */
- typedef typename _RandomNumberEngine::result_type result_type;
- // parameter values
- static constexpr size_t block_size = __p;
- static constexpr size_t used_block = __r;
- /**
- * @brief Constructs a default %discard_block_engine engine.
- *
- * The underlying engine is default constructed as well.
- */
- discard_block_engine()
- : _M_b(), _M_n(0) { }
- /**
- * @brief Copy constructs a %discard_block_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- discard_block_engine(const _RandomNumberEngine& __rng)
- : _M_b(__rng), _M_n(0) { }
- /**
- * @brief Move constructs a %discard_block_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- discard_block_engine(_RandomNumberEngine&& __rng)
- : _M_b(std::move(__rng)), _M_n(0) { }
- /**
- * @brief Seed constructs a %discard_block_engine engine.
- *
- * Constructs the underlying generator engine seeded with @p __s.
- * @param __s A seed value for the base class engine.
- */
- explicit
- discard_block_engine(result_type __s)
- : _M_b(__s), _M_n(0) { }
- /**
- * @brief Generator construct a %discard_block_engine engine.
- *
- * @param __q A seed sequence.
- */
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq, discard_block_engine>::value
- && !std::is_same<_Sseq, _RandomNumberEngine>::value>
- ::type>
- explicit
- discard_block_engine(_Sseq& __q)
- : _M_b(__q), _M_n(0)
- { }
- /**
- * @brief Reseeds the %discard_block_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed()
- {
- _M_b.seed();
- _M_n = 0;
- }
- /**
- * @brief Reseeds the %discard_block_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed(result_type __s)
- {
- _M_b.seed(__s);
- _M_n = 0;
- }
- /**
- * @brief Reseeds the %discard_block_engine object with the given seed
- * sequence.
- * @param __q A seed generator function.
- */
- template<typename _Sseq>
- void
- seed(_Sseq& __q)
- {
- _M_b.seed(__q);
- _M_n = 0;
- }
- /**
- * @brief Gets a const reference to the underlying generator engine
- * object.
- */
- const _RandomNumberEngine&
- base() const noexcept
- { return _M_b; }
- /**
- * @brief Gets the minimum value in the generated random number range.
- */
- static constexpr result_type
- min()
- { return _RandomNumberEngine::min(); }
- /**
- * @brief Gets the maximum value in the generated random number range.
- */
- static constexpr result_type
- max()
- { return _RandomNumberEngine::max(); }
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
- /**
- * @brief Gets the next value in the generated random number sequence.
- */
- result_type
- operator()();
- /**
- * @brief Compares two %discard_block_engine random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A %discard_block_engine random number generator object.
- * @param __rhs Another %discard_block_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const discard_block_engine& __lhs,
- const discard_block_engine& __rhs)
- { return __lhs._M_b == __rhs._M_b && __lhs._M_n == __rhs._M_n; }
- /**
- * @brief Inserts the current state of a %discard_block_engine random
- * number generator engine @p __x into the output stream
- * @p __os.
- *
- * @param __os An output stream.
- * @param __x A %discard_block_engine random number generator engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::discard_block_engine<_RandomNumberEngine1,
- __p1, __r1>& __x);
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A %discard_block_engine random number generator engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __p1, size_t __r1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::discard_block_engine<_RandomNumberEngine1,
- __p1, __r1>& __x);
- private:
- _RandomNumberEngine _M_b;
- size_t _M_n;
- };
- /**
- * @brief Compares two %discard_block_engine random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A %discard_block_engine random number generator object.
- * @param __rhs Another %discard_block_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _RandomNumberEngine, size_t __p, size_t __r>
- inline bool
- operator!=(const std::discard_block_engine<_RandomNumberEngine, __p,
- __r>& __lhs,
- const std::discard_block_engine<_RandomNumberEngine, __p,
- __r>& __rhs)
- { return !(__lhs == __rhs); }
- /**
- * Produces random numbers by combining random numbers from some base
- * engine to produce random numbers with a specifies number of bits @p __w.
- */
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
- class independent_bits_engine
- {
- static_assert(std::is_unsigned<_UIntType>::value, "template argument "
- "substituting _UIntType not an unsigned integral type");
- static_assert(0u < __w && __w <= std::numeric_limits<_UIntType>::digits,
- "template argument substituting __w out of bounds");
- public:
- /** The type of the generated random value. */
- typedef _UIntType result_type;
- /**
- * @brief Constructs a default %independent_bits_engine engine.
- *
- * The underlying engine is default constructed as well.
- */
- independent_bits_engine()
- : _M_b() { }
- /**
- * @brief Copy constructs a %independent_bits_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- independent_bits_engine(const _RandomNumberEngine& __rng)
- : _M_b(__rng) { }
- /**
- * @brief Move constructs a %independent_bits_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- independent_bits_engine(_RandomNumberEngine&& __rng)
- : _M_b(std::move(__rng)) { }
- /**
- * @brief Seed constructs a %independent_bits_engine engine.
- *
- * Constructs the underlying generator engine seeded with @p __s.
- * @param __s A seed value for the base class engine.
- */
- explicit
- independent_bits_engine(result_type __s)
- : _M_b(__s) { }
- /**
- * @brief Generator construct a %independent_bits_engine engine.
- *
- * @param __q A seed sequence.
- */
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq, independent_bits_engine>::value
- && !std::is_same<_Sseq, _RandomNumberEngine>::value>
- ::type>
- explicit
- independent_bits_engine(_Sseq& __q)
- : _M_b(__q)
- { }
- /**
- * @brief Reseeds the %independent_bits_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed()
- { _M_b.seed(); }
- /**
- * @brief Reseeds the %independent_bits_engine object with the default
- * seed for the underlying base class generator engine.
- */
- void
- seed(result_type __s)
- { _M_b.seed(__s); }
- /**
- * @brief Reseeds the %independent_bits_engine object with the given
- * seed sequence.
- * @param __q A seed generator function.
- */
- template<typename _Sseq>
- void
- seed(_Sseq& __q)
- { _M_b.seed(__q); }
- /**
- * @brief Gets a const reference to the underlying generator engine
- * object.
- */
- const _RandomNumberEngine&
- base() const noexcept
- { return _M_b; }
- /**
- * @brief Gets the minimum value in the generated random number range.
- */
- static constexpr result_type
- min()
- { return 0U; }
- /**
- * @brief Gets the maximum value in the generated random number range.
- */
- static constexpr result_type
- max()
- { return __detail::_Shift<_UIntType, __w>::__value - 1; }
- /**
- * @brief Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
- /**
- * @brief Gets the next value in the generated random number sequence.
- */
- result_type
- operator()();
- /**
- * @brief Compares two %independent_bits_engine random number generator
- * objects of the same type for equality.
- *
- * @param __lhs A %independent_bits_engine random number generator
- * object.
- * @param __rhs Another %independent_bits_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const independent_bits_engine& __lhs,
- const independent_bits_engine& __rhs)
- { return __lhs._M_b == __rhs._M_b; }
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A %independent_bits_engine random number generator
- * engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::independent_bits_engine<_RandomNumberEngine,
- __w, _UIntType>& __x)
- {
- __is >> __x._M_b;
- return __is;
- }
- private:
- _RandomNumberEngine _M_b;
- };
- /**
- * @brief Compares two %independent_bits_engine random number generator
- * objects of the same type for inequality.
- *
- * @param __lhs A %independent_bits_engine random number generator
- * object.
- * @param __rhs Another %independent_bits_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType>
- inline bool
- operator!=(const std::independent_bits_engine<_RandomNumberEngine, __w,
- _UIntType>& __lhs,
- const std::independent_bits_engine<_RandomNumberEngine, __w,
- _UIntType>& __rhs)
- { return !(__lhs == __rhs); }
- /**
- * @brief Inserts the current state of a %independent_bits_engine random
- * number generator engine @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %independent_bits_engine random number generator engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RandomNumberEngine, size_t __w, typename _UIntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::independent_bits_engine<_RandomNumberEngine,
- __w, _UIntType>& __x)
- {
- __os << __x.base();
- return __os;
- }
- /**
- * @brief Produces random numbers by combining random numbers from some
- * base engine to produce random numbers with a specifies number of bits
- * @p __w.
- */
- template<typename _RandomNumberEngine, size_t __k>
- class shuffle_order_engine
- {
- static_assert(1u <= __k, "template argument substituting "
- "__k out of bound");
- public:
- /** The type of the generated random value. */
- typedef typename _RandomNumberEngine::result_type result_type;
- static constexpr size_t table_size = __k;
- /**
- * @brief Constructs a default %shuffle_order_engine engine.
- *
- * The underlying engine is default constructed as well.
- */
- shuffle_order_engine()
- : _M_b()
- { _M_initialize(); }
- /**
- * @brief Copy constructs a %shuffle_order_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- shuffle_order_engine(const _RandomNumberEngine& __rng)
- : _M_b(__rng)
- { _M_initialize(); }
- /**
- * @brief Move constructs a %shuffle_order_engine engine.
- *
- * Copies an existing base class random number generator.
- * @param __rng An existing (base class) engine object.
- */
- explicit
- shuffle_order_engine(_RandomNumberEngine&& __rng)
- : _M_b(std::move(__rng))
- { _M_initialize(); }
- /**
- * @brief Seed constructs a %shuffle_order_engine engine.
- *
- * Constructs the underlying generator engine seeded with @p __s.
- * @param __s A seed value for the base class engine.
- */
- explicit
- shuffle_order_engine(result_type __s)
- : _M_b(__s)
- { _M_initialize(); }
- /**
- * @brief Generator construct a %shuffle_order_engine engine.
- *
- * @param __q A seed sequence.
- */
- template<typename _Sseq, typename = typename
- std::enable_if<!std::is_same<_Sseq, shuffle_order_engine>::value
- && !std::is_same<_Sseq, _RandomNumberEngine>::value>
- ::type>
- explicit
- shuffle_order_engine(_Sseq& __q)
- : _M_b(__q)
- { _M_initialize(); }
- /**
- * @brief Reseeds the %shuffle_order_engine object with the default seed
- for the underlying base class generator engine.
- */
- void
- seed()
- {
- _M_b.seed();
- _M_initialize();
- }
- /**
- * @brief Reseeds the %shuffle_order_engine object with the default seed
- * for the underlying base class generator engine.
- */
- void
- seed(result_type __s)
- {
- _M_b.seed(__s);
- _M_initialize();
- }
- /**
- * @brief Reseeds the %shuffle_order_engine object with the given seed
- * sequence.
- * @param __q A seed generator function.
- */
- template<typename _Sseq>
- void
- seed(_Sseq& __q)
- {
- _M_b.seed(__q);
- _M_initialize();
- }
- /**
- * Gets a const reference to the underlying generator engine object.
- */
- const _RandomNumberEngine&
- base() const noexcept
- { return _M_b; }
- /**
- * Gets the minimum value in the generated random number range.
- */
- static constexpr result_type
- min()
- { return _RandomNumberEngine::min(); }
- /**
- * Gets the maximum value in the generated random number range.
- */
- static constexpr result_type
- max()
- { return _RandomNumberEngine::max(); }
- /**
- * Discard a sequence of random numbers.
- */
- void
- discard(unsigned long long __z)
- {
- for (; __z != 0ULL; --__z)
- (*this)();
- }
- /**
- * Gets the next value in the generated random number sequence.
- */
- result_type
- operator()();
- /**
- * Compares two %shuffle_order_engine random number generator objects
- * of the same type for equality.
- *
- * @param __lhs A %shuffle_order_engine random number generator object.
- * @param __rhs Another %shuffle_order_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be equal, false otherwise.
- */
- friend bool
- operator==(const shuffle_order_engine& __lhs,
- const shuffle_order_engine& __rhs)
- { return (__lhs._M_b == __rhs._M_b
- && std::equal(__lhs._M_v, __lhs._M_v + __k, __rhs._M_v)
- && __lhs._M_y == __rhs._M_y); }
- /**
- * @brief Inserts the current state of a %shuffle_order_engine random
- * number generator engine @p __x into the output stream
- @p __os.
- *
- * @param __os An output stream.
- * @param __x A %shuffle_order_engine random number generator engine.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __k1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::shuffle_order_engine<_RandomNumberEngine1,
- __k1>& __x);
- /**
- * @brief Extracts the current state of a % subtract_with_carry_engine
- * random number generator engine @p __x from the input stream
- * @p __is.
- *
- * @param __is An input stream.
- * @param __x A %shuffle_order_engine random number generator engine.
- *
- * @returns The input stream with the state of @p __x extracted or in
- * an error state.
- */
- template<typename _RandomNumberEngine1, size_t __k1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::shuffle_order_engine<_RandomNumberEngine1, __k1>& __x);
- private:
- void _M_initialize()
- {
- for (size_t __i = 0; __i < __k; ++__i)
- _M_v[__i] = _M_b();
- _M_y = _M_b();
- }
- _RandomNumberEngine _M_b;
- result_type _M_v[__k];
- result_type _M_y;
- };
- /**
- * Compares two %shuffle_order_engine random number generator objects
- * of the same type for inequality.
- *
- * @param __lhs A %shuffle_order_engine random number generator object.
- * @param __rhs Another %shuffle_order_engine random number generator
- * object.
- *
- * @returns true if the infinite sequences of generated values
- * would be different, false otherwise.
- */
- template<typename _RandomNumberEngine, size_t __k>
- inline bool
- operator!=(const std::shuffle_order_engine<_RandomNumberEngine,
- __k>& __lhs,
- const std::shuffle_order_engine<_RandomNumberEngine,
- __k>& __rhs)
- { return !(__lhs == __rhs); }
- /**
- * The classic Minimum Standard rand0 of Lewis, Goodman, and Miller.
- */
- typedef linear_congruential_engine<uint_fast32_t, 16807UL, 0UL, 2147483647UL>
- minstd_rand0;
- /**
- * An alternative LCR (Lehmer Generator function).
- */
- typedef linear_congruential_engine<uint_fast32_t, 48271UL, 0UL, 2147483647UL>
- minstd_rand;
- /**
- * The classic Mersenne Twister.
- *
- * Reference:
- * M. Matsumoto and T. Nishimura, Mersenne Twister: A 623-Dimensionally
- * Equidistributed Uniform Pseudo-Random Number Generator, ACM Transactions
- * on Modeling and Computer Simulation, Vol. 8, No. 1, January 1998, pp 3-30.
- */
- typedef mersenne_twister_engine<
- uint_fast32_t,
- 32, 624, 397, 31,
- 0x9908b0dfUL, 11,
- 0xffffffffUL, 7,
- 0x9d2c5680UL, 15,
- 0xefc60000UL, 18, 1812433253UL> mt19937;
- /**
- * An alternative Mersenne Twister.
- */
- typedef mersenne_twister_engine<
- uint_fast64_t,
- 64, 312, 156, 31,
- 0xb5026f5aa96619e9ULL, 29,
- 0x5555555555555555ULL, 17,
- 0x71d67fffeda60000ULL, 37,
- 0xfff7eee000000000ULL, 43,
- 6364136223846793005ULL> mt19937_64;
- typedef subtract_with_carry_engine<uint_fast32_t, 24, 10, 24>
- ranlux24_base;
- typedef subtract_with_carry_engine<uint_fast64_t, 48, 5, 12>
- ranlux48_base;
- typedef discard_block_engine<ranlux24_base, 223, 23> ranlux24;
- typedef discard_block_engine<ranlux48_base, 389, 11> ranlux48;
- typedef shuffle_order_engine<minstd_rand0, 256> knuth_b;
- typedef minstd_rand0 default_random_engine;
- /**
- * A standard interface to a platform-specific non-deterministic
- * random number generator (if any are available).
- */
- class random_device
- {
- public:
- /** The type of the generated random value. */
- typedef unsigned int result_type;
- // constructors, destructors and member functions
- #ifdef _GLIBCXX_USE_RANDOM_TR1
- explicit
- random_device(const std::string& __token = "default")
- {
- _M_init(__token);
- }
- ~random_device()
- { _M_fini(); }
- #else
- explicit
- random_device(const std::string& __token = "mt19937")
- { _M_init_pretr1(__token); }
- public:
- #endif
- static constexpr result_type
- min()
- { return std::numeric_limits<result_type>::min(); }
- static constexpr result_type
- max()
- { return std::numeric_limits<result_type>::max(); }
- double
- entropy() const noexcept
- { return 0.0; }
- result_type
- operator()()
- {
- #ifdef _GLIBCXX_USE_RANDOM_TR1
- return this->_M_getval();
- #else
- return this->_M_getval_pretr1();
- #endif
- }
- // No copy functions.
- random_device(const random_device&) = delete;
- void operator=(const random_device&) = delete;
- private:
- void _M_init(const std::string& __token);
- void _M_init_pretr1(const std::string& __token);
- void _M_fini();
- result_type _M_getval();
- result_type _M_getval_pretr1();
- union
- {
- void* _M_file;
- mt19937 _M_mt;
- };
- };
- /* @} */ // group random_generators
- /**
- * @addtogroup random_distributions Random Number Distributions
- * @ingroup random
- * @{
- */
- /**
- * @addtogroup random_distributions_uniform Uniform Distributions
- * @ingroup random_distributions
- * @{
- */
- /**
- * @brief Uniform discrete distribution for random numbers.
- * A discrete random distribution on the range @f$[min, max]@f$ with equal
- * probability throughout the range.
- */
- template<typename _IntType = int>
- class uniform_int_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "template argument not an integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef uniform_int_distribution<_IntType> distribution_type;
- explicit
- param_type(_IntType __a = 0,
- _IntType __b = std::numeric_limits<_IntType>::max())
- : _M_a(__a), _M_b(__b)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b);
- }
- result_type
- a() const
- { return _M_a; }
- result_type
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
- private:
- _IntType _M_a;
- _IntType _M_b;
- };
- public:
- /**
- * @brief Constructs a uniform distribution object.
- */
- explicit
- uniform_int_distribution(_IntType __a = 0,
- _IntType __b = std::numeric_limits<_IntType>::max())
- : _M_param(__a, __b)
- { }
- explicit
- uniform_int_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for the uniform integer distribution.
- */
- void
- reset() { }
- result_type
- a() const
- { return _M_param.a(); }
- result_type
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the inclusive lower bound of the distribution range.
- */
- result_type
- min() const
- { return this->a(); }
- /**
- * @brief Returns the inclusive upper bound of the distribution range.
- */
- result_type
- max() const
- { return this->b(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two uniform integer distributions have
- * the same parameters.
- */
- friend bool
- operator==(const uniform_int_distribution& __d1,
- const uniform_int_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two uniform integer distributions have
- * different parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::uniform_int_distribution<_IntType>& __d1,
- const std::uniform_int_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %uniform_int_distribution random number
- * distribution @p __x into the output stream @p os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_int_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const std::uniform_int_distribution<_IntType>&);
- /**
- * @brief Extracts a %uniform_int_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_int_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _IntType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- std::uniform_int_distribution<_IntType>&);
- /**
- * @brief Uniform continuous distribution for random numbers.
- *
- * A continuous random distribution on the range [min, max) with equal
- * probability throughout the range. The URNG should be real-valued and
- * deliver number in the range [0, 1).
- */
- template<typename _RealType = double>
- class uniform_real_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef uniform_real_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __a = _RealType(0),
- _RealType __b = _RealType(1))
- : _M_a(__a), _M_b(__b)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_a <= _M_b);
- }
- result_type
- a() const
- { return _M_a; }
- result_type
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
- public:
- /**
- * @brief Constructs a uniform_real_distribution object.
- *
- * @param __a [IN] The lower bound of the distribution.
- * @param __b [IN] The upper bound of the distribution.
- */
- explicit
- uniform_real_distribution(_RealType __a = _RealType(0),
- _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
- explicit
- uniform_real_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for the uniform real distribution.
- */
- void
- reset() { }
- result_type
- a() const
- { return _M_param.a(); }
- result_type
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the inclusive lower bound of the distribution range.
- */
- result_type
- min() const
- { return this->a(); }
- /**
- * @brief Returns the inclusive upper bound of the distribution range.
- */
- result_type
- max() const
- { return this->b(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- return (__aurng() * (__p.b() - __p.a())) + __p.a();
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two uniform real distributions have
- * the same parameters.
- */
- friend bool
- operator==(const uniform_real_distribution& __d1,
- const uniform_real_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two uniform real distributions have
- * different parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::uniform_real_distribution<_IntType>& __d1,
- const std::uniform_real_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %uniform_real_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %uniform_real_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>&,
- const std::uniform_real_distribution<_RealType>&);
- /**
- * @brief Extracts a %uniform_real_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %uniform_real_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>&,
- std::uniform_real_distribution<_RealType>&);
- /* @} */ // group random_distributions_uniform
- /**
- * @addtogroup random_distributions_normal Normal Distributions
- * @ingroup random_distributions
- * @{
- */
- /**
- * @brief A normal continuous distribution for random numbers.
- *
- * The formula for the normal probability density function is
- * @f[
- * p(x|\mu,\sigma) = \frac{1}{\sigma \sqrt{2 \pi}}
- * e^{- \frac{{x - \mu}^ {2}}{2 \sigma ^ {2}} }
- * @f]
- */
- template<typename _RealType = double>
- class normal_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef normal_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __mean = _RealType(0),
- _RealType __stddev = _RealType(1))
- : _M_mean(__mean), _M_stddev(__stddev)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_stddev > _RealType(0));
- }
- _RealType
- mean() const
- { return _M_mean; }
- _RealType
- stddev() const
- { return _M_stddev; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_mean == __p2._M_mean
- && __p1._M_stddev == __p2._M_stddev); }
- private:
- _RealType _M_mean;
- _RealType _M_stddev;
- };
- public:
- /**
- * Constructs a normal distribution with parameters @f$mean@f$ and
- * standard deviation.
- */
- explicit
- normal_distribution(result_type __mean = result_type(0),
- result_type __stddev = result_type(1))
- : _M_param(__mean, __stddev), _M_saved_available(false)
- { }
- explicit
- normal_distribution(const param_type& __p)
- : _M_param(__p), _M_saved_available(false)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_saved_available = false; }
- /**
- * @brief Returns the mean of the distribution.
- */
- _RealType
- mean() const
- { return _M_param.mean(); }
- /**
- * @brief Returns the standard deviation of the distribution.
- */
- _RealType
- stddev() const
- { return _M_param.stddev(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two normal distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- template<typename _RealType1>
- friend bool
- operator==(const std::normal_distribution<_RealType1>& __d1,
- const std::normal_distribution<_RealType1>& __d2);
- /**
- * @brief Inserts a %normal_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %normal_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::normal_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %normal_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %normal_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::normal_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- result_type _M_saved;
- bool _M_saved_available;
- };
- /**
- * @brief Return true if two normal distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::normal_distribution<_RealType>& __d1,
- const std::normal_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A lognormal_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f[
- * p(x|m,s) = \frac{1}{sx\sqrt{2\pi}}
- * \exp{-\frac{(\ln{x} - m)^2}{2s^2}}
- * @f]
- */
- template<typename _RealType = double>
- class lognormal_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef lognormal_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __m = _RealType(0),
- _RealType __s = _RealType(1))
- : _M_m(__m), _M_s(__s)
- { }
- _RealType
- m() const
- { return _M_m; }
- _RealType
- s() const
- { return _M_s; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_m == __p2._M_m && __p1._M_s == __p2._M_s; }
- private:
- _RealType _M_m;
- _RealType _M_s;
- };
- explicit
- lognormal_distribution(_RealType __m = _RealType(0),
- _RealType __s = _RealType(1))
- : _M_param(__m, __s), _M_nd()
- { }
- explicit
- lognormal_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
- /**
- * Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
- /**
- *
- */
- _RealType
- m() const
- { return _M_param.m(); }
- _RealType
- s() const
- { return _M_param.s(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { return std::exp(__p.s() * _M_nd(__urng) + __p.m()); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two lognormal distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const lognormal_distribution& __d1,
- const lognormal_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_nd == __d2._M_nd); }
- /**
- * @brief Inserts a %lognormal_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %lognormal_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::lognormal_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %lognormal_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %lognormal_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::lognormal_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::normal_distribution<result_type> _M_nd;
- };
- /**
- * @brief Return true if two lognormal distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::lognormal_distribution<_RealType>& __d1,
- const std::lognormal_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A gamma continuous distribution for random numbers.
- *
- * The formula for the gamma probability density function is:
- * @f[
- * p(x|\alpha,\beta) = \frac{1}{\beta\Gamma(\alpha)}
- * (x/\beta)^{\alpha - 1} e^{-x/\beta}
- * @f]
- */
- template<typename _RealType = double>
- class gamma_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef gamma_distribution<_RealType> distribution_type;
- friend class gamma_distribution<_RealType>;
- explicit
- param_type(_RealType __alpha_val = _RealType(1),
- _RealType __beta_val = _RealType(1))
- : _M_alpha(__alpha_val), _M_beta(__beta_val)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_alpha > _RealType(0));
- _M_initialize();
- }
- _RealType
- alpha() const
- { return _M_alpha; }
- _RealType
- beta() const
- { return _M_beta; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_alpha == __p2._M_alpha
- && __p1._M_beta == __p2._M_beta); }
- private:
- void
- _M_initialize();
- _RealType _M_alpha;
- _RealType _M_beta;
- _RealType _M_malpha, _M_a2;
- };
- public:
- /**
- * @brief Constructs a gamma distribution with parameters
- * @f$\alpha@f$ and @f$\beta@f$.
- */
- explicit
- gamma_distribution(_RealType __alpha_val = _RealType(1),
- _RealType __beta_val = _RealType(1))
- : _M_param(__alpha_val, __beta_val), _M_nd()
- { }
- explicit
- gamma_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
- /**
- * @brief Returns the @f$\alpha@f$ of the distribution.
- */
- _RealType
- alpha() const
- { return _M_param.alpha(); }
- /**
- * @brief Returns the @f$\beta@f$ of the distribution.
- */
- _RealType
- beta() const
- { return _M_param.beta(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two gamma distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const gamma_distribution& __d1,
- const gamma_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_nd == __d2._M_nd); }
- /**
- * @brief Inserts a %gamma_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %gamma_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::gamma_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %gamma_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %gamma_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::gamma_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::normal_distribution<result_type> _M_nd;
- };
- /**
- * @brief Return true if two gamma distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::gamma_distribution<_RealType>& __d1,
- const std::gamma_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A chi_squared_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f$p(x|n) = \frac{x^{(n/2) - 1}e^{-x/2}}{\Gamma(n/2) 2^{n/2}}@f$
- */
- template<typename _RealType = double>
- class chi_squared_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef chi_squared_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __n = _RealType(1))
- : _M_n(__n)
- { }
- _RealType
- n() const
- { return _M_n; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_n == __p2._M_n; }
- private:
- _RealType _M_n;
- };
- explicit
- chi_squared_distribution(_RealType __n = _RealType(1))
- : _M_param(__n), _M_gd(__n / 2)
- { }
- explicit
- chi_squared_distribution(const param_type& __p)
- : _M_param(__p), _M_gd(__p.n() / 2)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_gd.reset(); }
- /**
- *
- */
- _RealType
- n() const
- { return _M_param.n(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return 2 * _M_gd(__urng); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
- return 2 * _M_gd(__urng, param_type(__p.n() / 2));
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { typename std::gamma_distribution<result_type>::param_type
- __p2(__p.n() / 2);
- this->__generate_impl(__f, __t, __urng, __p2); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { typename std::gamma_distribution<result_type>::param_type
- __p2(__p.n() / 2);
- this->__generate_impl(__f, __t, __urng, __p2); }
- /**
- * @brief Return true if two Chi-squared distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const chi_squared_distribution& __d1,
- const chi_squared_distribution& __d2)
- { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; }
- /**
- * @brief Inserts a %chi_squared_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %chi_squared_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::chi_squared_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %chi_squared_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %chi_squared_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::chi_squared_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const typename
- std::gamma_distribution<result_type>::param_type& __p);
- param_type _M_param;
- std::gamma_distribution<result_type> _M_gd;
- };
- /**
- * @brief Return true if two Chi-squared distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::chi_squared_distribution<_RealType>& __d1,
- const std::chi_squared_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A cauchy_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f$p(x|a,b) = (\pi b (1 + (\frac{x-a}{b})^2))^{-1}@f$
- */
- template<typename _RealType = double>
- class cauchy_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef cauchy_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __a = _RealType(0),
- _RealType __b = _RealType(1))
- : _M_a(__a), _M_b(__b)
- { }
- _RealType
- a() const
- { return _M_a; }
- _RealType
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
- explicit
- cauchy_distribution(_RealType __a = _RealType(0),
- _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
- explicit
- cauchy_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- *
- */
- _RealType
- a() const
- { return _M_param.a(); }
- _RealType
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Cauchy distributions have
- * the same parameters.
- */
- friend bool
- operator==(const cauchy_distribution& __d1,
- const cauchy_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two Cauchy distributions have
- * different parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::cauchy_distribution<_RealType>& __d1,
- const std::cauchy_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %cauchy_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %cauchy_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::cauchy_distribution<_RealType>& __x);
- /**
- * @brief Extracts a %cauchy_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %cauchy_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::cauchy_distribution<_RealType>& __x);
- /**
- * @brief A fisher_f_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f[
- * p(x|m,n) = \frac{\Gamma((m+n)/2)}{\Gamma(m/2)\Gamma(n/2)}
- * (\frac{m}{n})^{m/2} x^{(m/2)-1}
- * (1 + \frac{mx}{n})^{-(m+n)/2}
- * @f]
- */
- template<typename _RealType = double>
- class fisher_f_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef fisher_f_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __m = _RealType(1),
- _RealType __n = _RealType(1))
- : _M_m(__m), _M_n(__n)
- { }
- _RealType
- m() const
- { return _M_m; }
- _RealType
- n() const
- { return _M_n; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_m == __p2._M_m && __p1._M_n == __p2._M_n; }
- private:
- _RealType _M_m;
- _RealType _M_n;
- };
- explicit
- fisher_f_distribution(_RealType __m = _RealType(1),
- _RealType __n = _RealType(1))
- : _M_param(__m, __n), _M_gd_x(__m / 2), _M_gd_y(__n / 2)
- { }
- explicit
- fisher_f_distribution(const param_type& __p)
- : _M_param(__p), _M_gd_x(__p.m() / 2), _M_gd_y(__p.n() / 2)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_gd_x.reset();
- _M_gd_y.reset();
- }
- /**
- *
- */
- _RealType
- m() const
- { return _M_param.m(); }
- _RealType
- n() const
- { return _M_param.n(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return (_M_gd_x(__urng) * n()) / (_M_gd_y(__urng) * m()); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
- return ((_M_gd_x(__urng, param_type(__p.m() / 2)) * n())
- / (_M_gd_y(__urng, param_type(__p.n() / 2)) * m()));
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Fisher f distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const fisher_f_distribution& __d1,
- const fisher_f_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_gd_x == __d2._M_gd_x
- && __d1._M_gd_y == __d2._M_gd_y); }
- /**
- * @brief Inserts a %fisher_f_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %fisher_f_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::fisher_f_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %fisher_f_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %fisher_f_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::fisher_f_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::gamma_distribution<result_type> _M_gd_x, _M_gd_y;
- };
- /**
- * @brief Return true if two Fisher f distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::fisher_f_distribution<_RealType>& __d1,
- const std::fisher_f_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A student_t_distribution random number distribution.
- *
- * The formula for the normal probability mass function is:
- * @f[
- * p(x|n) = \frac{1}{\sqrt(n\pi)} \frac{\Gamma((n+1)/2)}{\Gamma(n/2)}
- * (1 + \frac{x^2}{n}) ^{-(n+1)/2}
- * @f]
- */
- template<typename _RealType = double>
- class student_t_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef student_t_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __n = _RealType(1))
- : _M_n(__n)
- { }
- _RealType
- n() const
- { return _M_n; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_n == __p2._M_n; }
- private:
- _RealType _M_n;
- };
- explicit
- student_t_distribution(_RealType __n = _RealType(1))
- : _M_param(__n), _M_nd(), _M_gd(__n / 2, 2)
- { }
- explicit
- student_t_distribution(const param_type& __p)
- : _M_param(__p), _M_nd(), _M_gd(__p.n() / 2, 2)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- {
- _M_nd.reset();
- _M_gd.reset();
- }
- /**
- *
- */
- _RealType
- n() const
- { return _M_param.n(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return _M_nd(__urng) * std::sqrt(n() / _M_gd(__urng)); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- typedef typename std::gamma_distribution<result_type>::param_type
- param_type;
-
- const result_type __g = _M_gd(__urng, param_type(__p.n() / 2, 2));
- return _M_nd(__urng) * std::sqrt(__p.n() / __g);
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Student t distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const student_t_distribution& __d1,
- const student_t_distribution& __d2)
- { return (__d1._M_param == __d2._M_param
- && __d1._M_nd == __d2._M_nd && __d1._M_gd == __d2._M_gd); }
- /**
- * @brief Inserts a %student_t_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %student_t_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::student_t_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %student_t_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %student_t_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::student_t_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::normal_distribution<result_type> _M_nd;
- std::gamma_distribution<result_type> _M_gd;
- };
- /**
- * @brief Return true if two Student t distributions are different.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::student_t_distribution<_RealType>& __d1,
- const std::student_t_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /* @} */ // group random_distributions_normal
- /**
- * @addtogroup random_distributions_bernoulli Bernoulli Distributions
- * @ingroup random_distributions
- * @{
- */
- /**
- * @brief A Bernoulli random number distribution.
- *
- * Generates a sequence of true and false values with likelihood @f$p@f$
- * that true will come up and @f$(1 - p)@f$ that false will appear.
- */
- class bernoulli_distribution
- {
- public:
- /** The type of the range of the distribution. */
- typedef bool result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef bernoulli_distribution distribution_type;
- explicit
- param_type(double __p = 0.5)
- : _M_p(__p)
- {
- _GLIBCXX_DEBUG_ASSERT((_M_p >= 0.0) && (_M_p <= 1.0));
- }
- double
- p() const
- { return _M_p; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_p == __p2._M_p; }
- private:
- double _M_p;
- };
- public:
- /**
- * @brief Constructs a Bernoulli distribution with likelihood @p p.
- *
- * @param __p [IN] The likelihood of a true result being returned.
- * Must be in the interval @f$[0, 1]@f$.
- */
- explicit
- bernoulli_distribution(double __p = 0.5)
- : _M_param(__p)
- { }
- explicit
- bernoulli_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for a Bernoulli distribution.
- */
- void
- reset() { }
- /**
- * @brief Returns the @p p parameter of the distribution.
- */
- double
- p() const
- { return _M_param.p(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::min(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, double>
- __aurng(__urng);
- if ((__aurng() - __aurng.min())
- < __p.p() * (__aurng.max() - __aurng.min()))
- return true;
- return false;
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng, const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Bernoulli distributions have
- * the same parameters.
- */
- friend bool
- operator==(const bernoulli_distribution& __d1,
- const bernoulli_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two Bernoulli distributions have
- * different parameters.
- */
- inline bool
- operator!=(const std::bernoulli_distribution& __d1,
- const std::bernoulli_distribution& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %bernoulli_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %bernoulli_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::bernoulli_distribution& __x);
- /**
- * @brief Extracts a %bernoulli_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %bernoulli_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::bernoulli_distribution& __x)
- {
- double __p;
- __is >> __p;
- __x.param(bernoulli_distribution::param_type(__p));
- return __is;
- }
- /**
- * @brief A discrete binomial random number distribution.
- *
- * The formula for the binomial probability density function is
- * @f$p(i|t,p) = \binom{t}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
- * and @f$p@f$ are the parameters of the distribution.
- */
- template<typename _IntType = int>
- class binomial_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "template argument not an integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef binomial_distribution<_IntType> distribution_type;
- friend class binomial_distribution<_IntType>;
- explicit
- param_type(_IntType __t = _IntType(1), double __p = 0.5)
- : _M_t(__t), _M_p(__p)
- {
- _GLIBCXX_DEBUG_ASSERT((_M_t >= _IntType(0))
- && (_M_p >= 0.0)
- && (_M_p <= 1.0));
- _M_initialize();
- }
- _IntType
- t() const
- { return _M_t; }
- double
- p() const
- { return _M_p; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_t == __p2._M_t && __p1._M_p == __p2._M_p; }
- private:
- void
- _M_initialize();
- _IntType _M_t;
- double _M_p;
- double _M_q;
- #if _GLIBCXX_USE_C99_MATH_TR1
- double _M_d1, _M_d2, _M_s1, _M_s2, _M_c,
- _M_a1, _M_a123, _M_s, _M_lf, _M_lp1p;
- #endif
- bool _M_easy;
- };
- // constructors and member function
- explicit
- binomial_distribution(_IntType __t = _IntType(1),
- double __p = 0.5)
- : _M_param(__t, __p), _M_nd()
- { }
- explicit
- binomial_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
- /**
- * @brief Returns the distribution @p t parameter.
- */
- _IntType
- t() const
- { return _M_param.t(); }
- /**
- * @brief Returns the distribution @p p parameter.
- */
- double
- p() const
- { return _M_param.p(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return 0; }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return _M_param.t(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two binomial distributions have
- * the same parameters and the sequences that would
- * be generated are equal.
- */
- friend bool
- operator==(const binomial_distribution& __d1,
- const binomial_distribution& __d2)
- #ifdef _GLIBCXX_USE_C99_MATH_TR1
- { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; }
- #else
- { return __d1._M_param == __d2._M_param; }
- #endif
- /**
- * @brief Inserts a %binomial_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %binomial_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1,
- typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::binomial_distribution<_IntType1>& __x);
- /**
- * @brief Extracts a %binomial_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %binomial_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _IntType1,
- typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::binomial_distribution<_IntType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _UniformRandomNumberGenerator>
- result_type
- _M_waiting(_UniformRandomNumberGenerator& __urng,
- _IntType __t, double __q);
- param_type _M_param;
- // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
- std::normal_distribution<double> _M_nd;
- };
- /**
- * @brief Return true if two binomial distributions are different.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::binomial_distribution<_IntType>& __d1,
- const std::binomial_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A discrete geometric random number distribution.
- *
- * The formula for the geometric probability density function is
- * @f$p(i|p) = p(1 - p)^{i}@f$ where @f$p@f$ is the parameter of the
- * distribution.
- */
- template<typename _IntType = int>
- class geometric_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "template argument not an integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef geometric_distribution<_IntType> distribution_type;
- friend class geometric_distribution<_IntType>;
- explicit
- param_type(double __p = 0.5)
- : _M_p(__p)
- {
- _GLIBCXX_DEBUG_ASSERT((_M_p > 0.0) && (_M_p < 1.0));
- _M_initialize();
- }
- double
- p() const
- { return _M_p; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_p == __p2._M_p; }
- private:
- void
- _M_initialize()
- { _M_log_1_p = std::log(1.0 - _M_p); }
- double _M_p;
- double _M_log_1_p;
- };
- // constructors and member function
- explicit
- geometric_distribution(double __p = 0.5)
- : _M_param(__p)
- { }
- explicit
- geometric_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- *
- * Does nothing for the geometric distribution.
- */
- void
- reset() { }
- /**
- * @brief Returns the distribution parameter @p p.
- */
- double
- p() const
- { return _M_param.p(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return 0; }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two geometric distributions have
- * the same parameters.
- */
- friend bool
- operator==(const geometric_distribution& __d1,
- const geometric_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two geometric distributions have
- * different parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::geometric_distribution<_IntType>& __d1,
- const std::geometric_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %geometric_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %geometric_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::geometric_distribution<_IntType>& __x);
- /**
- * @brief Extracts a %geometric_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %geometric_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _IntType,
- typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::geometric_distribution<_IntType>& __x);
- /**
- * @brief A negative_binomial_distribution random number distribution.
- *
- * The formula for the negative binomial probability mass function is
- * @f$p(i) = \binom{n}{i} p^i (1 - p)^{t - i}@f$ where @f$t@f$
- * and @f$p@f$ are the parameters of the distribution.
- */
- template<typename _IntType = int>
- class negative_binomial_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "template argument not an integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef negative_binomial_distribution<_IntType> distribution_type;
- explicit
- param_type(_IntType __k = 1, double __p = 0.5)
- : _M_k(__k), _M_p(__p)
- {
- _GLIBCXX_DEBUG_ASSERT((_M_k > 0) && (_M_p > 0.0) && (_M_p <= 1.0));
- }
- _IntType
- k() const
- { return _M_k; }
- double
- p() const
- { return _M_p; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_k == __p2._M_k && __p1._M_p == __p2._M_p; }
- private:
- _IntType _M_k;
- double _M_p;
- };
- explicit
- negative_binomial_distribution(_IntType __k = 1, double __p = 0.5)
- : _M_param(__k, __p), _M_gd(__k, (1.0 - __p) / __p)
- { }
- explicit
- negative_binomial_distribution(const param_type& __p)
- : _M_param(__p), _M_gd(__p.k(), (1.0 - __p.p()) / __p.p())
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_gd.reset(); }
- /**
- * @brief Return the @f$k@f$ parameter of the distribution.
- */
- _IntType
- k() const
- { return _M_param.k(); }
- /**
- * @brief Return the @f$p@f$ parameter of the distribution.
- */
- double
- p() const
- { return _M_param.p(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng);
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate_impl(__f, __t, __urng); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two negative binomial distributions have
- * the same parameters and the sequences that would be
- * generated are equal.
- */
- friend bool
- operator==(const negative_binomial_distribution& __d1,
- const negative_binomial_distribution& __d2)
- { return __d1._M_param == __d2._M_param && __d1._M_gd == __d2._M_gd; }
- /**
- * @brief Inserts a %negative_binomial_distribution random
- * number distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %negative_binomial_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::negative_binomial_distribution<_IntType1>& __x);
- /**
- * @brief Extracts a %negative_binomial_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %negative_binomial_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::negative_binomial_distribution<_IntType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- std::gamma_distribution<double> _M_gd;
- };
- /**
- * @brief Return true if two negative binomial distributions are different.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::negative_binomial_distribution<_IntType>& __d1,
- const std::negative_binomial_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /* @} */ // group random_distributions_bernoulli
- /**
- * @addtogroup random_distributions_poisson Poisson Distributions
- * @ingroup random_distributions
- * @{
- */
- /**
- * @brief A discrete Poisson random number distribution.
- *
- * The formula for the Poisson probability density function is
- * @f$p(i|\mu) = \frac{\mu^i}{i!} e^{-\mu}@f$ where @f$\mu@f$ is the
- * parameter of the distribution.
- */
- template<typename _IntType = int>
- class poisson_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "template argument not an integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef poisson_distribution<_IntType> distribution_type;
- friend class poisson_distribution<_IntType>;
- explicit
- param_type(double __mean = 1.0)
- : _M_mean(__mean)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_mean > 0.0);
- _M_initialize();
- }
- double
- mean() const
- { return _M_mean; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_mean == __p2._M_mean; }
- private:
- // Hosts either log(mean) or the threshold of the simple method.
- void
- _M_initialize();
- double _M_mean;
- double _M_lm_thr;
- #if _GLIBCXX_USE_C99_MATH_TR1
- double _M_lfm, _M_sm, _M_d, _M_scx, _M_1cx, _M_c2b, _M_cb;
- #endif
- };
- // constructors and member function
- explicit
- poisson_distribution(double __mean = 1.0)
- : _M_param(__mean), _M_nd()
- { }
- explicit
- poisson_distribution(const param_type& __p)
- : _M_param(__p), _M_nd()
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { _M_nd.reset(); }
- /**
- * @brief Returns the distribution parameter @p mean.
- */
- double
- mean() const
- { return _M_param.mean(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return 0; }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Poisson distributions have the same
- * parameters and the sequences that would be generated
- * are equal.
- */
- friend bool
- operator==(const poisson_distribution& __d1,
- const poisson_distribution& __d2)
- #ifdef _GLIBCXX_USE_C99_MATH_TR1
- { return __d1._M_param == __d2._M_param && __d1._M_nd == __d2._M_nd; }
- #else
- { return __d1._M_param == __d2._M_param; }
- #endif
- /**
- * @brief Inserts a %poisson_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %poisson_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::poisson_distribution<_IntType1>& __x);
- /**
- * @brief Extracts a %poisson_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %poisson_distribution random number generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::poisson_distribution<_IntType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- // NB: Unused when _GLIBCXX_USE_C99_MATH_TR1 is undefined.
- std::normal_distribution<double> _M_nd;
- };
- /**
- * @brief Return true if two Poisson distributions are different.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::poisson_distribution<_IntType>& __d1,
- const std::poisson_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief An exponential continuous distribution for random numbers.
- *
- * The formula for the exponential probability density function is
- * @f$p(x|\lambda) = \lambda e^{-\lambda x}@f$.
- *
- * <table border=1 cellpadding=10 cellspacing=0>
- * <caption align=top>Distribution Statistics</caption>
- * <tr><td>Mean</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
- * <tr><td>Median</td><td>@f$\frac{\ln 2}{\lambda}@f$</td></tr>
- * <tr><td>Mode</td><td>@f$zero@f$</td></tr>
- * <tr><td>Range</td><td>@f$[0, \infty]@f$</td></tr>
- * <tr><td>Standard Deviation</td><td>@f$\frac{1}{\lambda}@f$</td></tr>
- * </table>
- */
- template<typename _RealType = double>
- class exponential_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef exponential_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __lambda = _RealType(1))
- : _M_lambda(__lambda)
- {
- _GLIBCXX_DEBUG_ASSERT(_M_lambda > _RealType(0));
- }
- _RealType
- lambda() const
- { return _M_lambda; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_lambda == __p2._M_lambda; }
- private:
- _RealType _M_lambda;
- };
- public:
- /**
- * @brief Constructs an exponential distribution with inverse scale
- * parameter @f$\lambda@f$.
- */
- explicit
- exponential_distribution(const result_type& __lambda = result_type(1))
- : _M_param(__lambda)
- { }
- explicit
- exponential_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- *
- * Has no effect on exponential distributions.
- */
- void
- reset() { }
- /**
- * @brief Returns the inverse scale parameter of the distribution.
- */
- _RealType
- lambda() const
- { return _M_param.lambda(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- {
- __detail::_Adaptor<_UniformRandomNumberGenerator, result_type>
- __aurng(__urng);
- return -std::log(result_type(1) - __aurng()) / __p.lambda();
- }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two exponential distributions have the same
- * parameters.
- */
- friend bool
- operator==(const exponential_distribution& __d1,
- const exponential_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two exponential distributions have different
- * parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::exponential_distribution<_RealType>& __d1,
- const std::exponential_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %exponential_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %exponential_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::exponential_distribution<_RealType>& __x);
- /**
- * @brief Extracts a %exponential_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %exponential_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::exponential_distribution<_RealType>& __x);
- /**
- * @brief A weibull_distribution random number distribution.
- *
- * The formula for the normal probability density function is:
- * @f[
- * p(x|\alpha,\beta) = \frac{\alpha}{\beta} (\frac{x}{\beta})^{\alpha-1}
- * \exp{(-(\frac{x}{\beta})^\alpha)}
- * @f]
- */
- template<typename _RealType = double>
- class weibull_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef weibull_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __a = _RealType(1),
- _RealType __b = _RealType(1))
- : _M_a(__a), _M_b(__b)
- { }
- _RealType
- a() const
- { return _M_a; }
- _RealType
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
- explicit
- weibull_distribution(_RealType __a = _RealType(1),
- _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
- explicit
- weibull_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Return the @f$a@f$ parameter of the distribution.
- */
- _RealType
- a() const
- { return _M_param.a(); }
- /**
- * @brief Return the @f$b@f$ parameter of the distribution.
- */
- _RealType
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two Weibull distributions have the same
- * parameters.
- */
- friend bool
- operator==(const weibull_distribution& __d1,
- const weibull_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two Weibull distributions have different
- * parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::weibull_distribution<_RealType>& __d1,
- const std::weibull_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %weibull_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %weibull_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::weibull_distribution<_RealType>& __x);
- /**
- * @brief Extracts a %weibull_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %weibull_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::weibull_distribution<_RealType>& __x);
- /**
- * @brief A extreme_value_distribution random number distribution.
- *
- * The formula for the normal probability mass function is
- * @f[
- * p(x|a,b) = \frac{1}{b}
- * \exp( \frac{a-x}{b} - \exp(\frac{a-x}{b}))
- * @f]
- */
- template<typename _RealType = double>
- class extreme_value_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef extreme_value_distribution<_RealType> distribution_type;
- explicit
- param_type(_RealType __a = _RealType(0),
- _RealType __b = _RealType(1))
- : _M_a(__a), _M_b(__b)
- { }
- _RealType
- a() const
- { return _M_a; }
- _RealType
- b() const
- { return _M_b; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_a == __p2._M_a && __p1._M_b == __p2._M_b; }
- private:
- _RealType _M_a;
- _RealType _M_b;
- };
- explicit
- extreme_value_distribution(_RealType __a = _RealType(0),
- _RealType __b = _RealType(1))
- : _M_param(__a, __b)
- { }
- explicit
- extreme_value_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Return the @f$a@f$ parameter of the distribution.
- */
- _RealType
- a() const
- { return _M_param.a(); }
- /**
- * @brief Return the @f$b@f$ parameter of the distribution.
- */
- _RealType
- b() const
- { return _M_param.b(); }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return std::numeric_limits<result_type>::lowest(); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- { return std::numeric_limits<result_type>::max(); }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two extreme value distributions have the same
- * parameters.
- */
- friend bool
- operator==(const extreme_value_distribution& __d1,
- const extreme_value_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two extreme value distributions have different
- * parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::extreme_value_distribution<_RealType>& __d1,
- const std::extreme_value_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief Inserts a %extreme_value_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %extreme_value_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::extreme_value_distribution<_RealType>& __x);
- /**
- * @brief Extracts a %extreme_value_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %extreme_value_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error state.
- */
- template<typename _RealType, typename _CharT, typename _Traits>
- std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::extreme_value_distribution<_RealType>& __x);
- /**
- * @brief A discrete_distribution random number distribution.
- *
- * The formula for the discrete probability mass function is
- *
- */
- template<typename _IntType = int>
- class discrete_distribution
- {
- static_assert(std::is_integral<_IntType>::value,
- "template argument not an integral type");
- public:
- /** The type of the range of the distribution. */
- typedef _IntType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef discrete_distribution<_IntType> distribution_type;
- friend class discrete_distribution<_IntType>;
- param_type()
- : _M_prob(), _M_cp()
- { }
- template<typename _InputIterator>
- param_type(_InputIterator __wbegin,
- _InputIterator __wend)
- : _M_prob(__wbegin, __wend), _M_cp()
- { _M_initialize(); }
- param_type(initializer_list<double> __wil)
- : _M_prob(__wil.begin(), __wil.end()), _M_cp()
- { _M_initialize(); }
- template<typename _Func>
- param_type(size_t __nw, double __xmin, double __xmax,
- _Func __fw);
- // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
- param_type(const param_type&) = default;
- param_type& operator=(const param_type&) = default;
- std::vector<double>
- probabilities() const
- { return _M_prob.empty() ? std::vector<double>(1, 1.0) : _M_prob; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_prob == __p2._M_prob; }
- private:
- void
- _M_initialize();
- std::vector<double> _M_prob;
- std::vector<double> _M_cp;
- };
- discrete_distribution()
- : _M_param()
- { }
- template<typename _InputIterator>
- discrete_distribution(_InputIterator __wbegin,
- _InputIterator __wend)
- : _M_param(__wbegin, __wend)
- { }
- discrete_distribution(initializer_list<double> __wl)
- : _M_param(__wl)
- { }
- template<typename _Func>
- discrete_distribution(size_t __nw, double __xmin, double __xmax,
- _Func __fw)
- : _M_param(__nw, __xmin, __xmax, __fw)
- { }
- explicit
- discrete_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Returns the probabilities of the distribution.
- */
- std::vector<double>
- probabilities() const
- {
- return _M_param._M_prob.empty()
- ? std::vector<double>(1, 1.0) : _M_param._M_prob;
- }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- { return result_type(0); }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return _M_param._M_prob.empty()
- ? result_type(0) : result_type(_M_param._M_prob.size() - 1);
- }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two discrete distributions have the same
- * parameters.
- */
- friend bool
- operator==(const discrete_distribution& __d1,
- const discrete_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %discrete_distribution random number distribution
- * @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %discrete_distribution random number distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::discrete_distribution<_IntType1>& __x);
- /**
- * @brief Extracts a %discrete_distribution random number distribution
- * @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %discrete_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _IntType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::discrete_distribution<_IntType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two discrete distributions have different
- * parameters.
- */
- template<typename _IntType>
- inline bool
- operator!=(const std::discrete_distribution<_IntType>& __d1,
- const std::discrete_distribution<_IntType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A piecewise_constant_distribution random number distribution.
- *
- * The formula for the piecewise constant probability mass function is
- *
- */
- template<typename _RealType = double>
- class piecewise_constant_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef piecewise_constant_distribution<_RealType> distribution_type;
- friend class piecewise_constant_distribution<_RealType>;
- param_type()
- : _M_int(), _M_den(), _M_cp()
- { }
- template<typename _InputIteratorB, typename _InputIteratorW>
- param_type(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin);
- template<typename _Func>
- param_type(initializer_list<_RealType> __bi, _Func __fw);
- template<typename _Func>
- param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
- _Func __fw);
- // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
- param_type(const param_type&) = default;
- param_type& operator=(const param_type&) = default;
- std::vector<_RealType>
- intervals() const
- {
- if (_M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_int;
- }
- std::vector<double>
- densities() const
- { return _M_den.empty() ? std::vector<double>(1, 1.0) : _M_den; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return __p1._M_int == __p2._M_int && __p1._M_den == __p2._M_den; }
- private:
- void
- _M_initialize();
- std::vector<_RealType> _M_int;
- std::vector<double> _M_den;
- std::vector<double> _M_cp;
- };
- explicit
- piecewise_constant_distribution()
- : _M_param()
- { }
- template<typename _InputIteratorB, typename _InputIteratorW>
- piecewise_constant_distribution(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin)
- : _M_param(__bfirst, __bend, __wbegin)
- { }
- template<typename _Func>
- piecewise_constant_distribution(initializer_list<_RealType> __bl,
- _Func __fw)
- : _M_param(__bl, __fw)
- { }
- template<typename _Func>
- piecewise_constant_distribution(size_t __nw,
- _RealType __xmin, _RealType __xmax,
- _Func __fw)
- : _M_param(__nw, __xmin, __xmax, __fw)
- { }
- explicit
- piecewise_constant_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * @brief Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Returns a vector of the intervals.
- */
- std::vector<_RealType>
- intervals() const
- {
- if (_M_param._M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_param._M_int;
- }
- /**
- * @brief Returns a vector of the probability densities.
- */
- std::vector<double>
- densities() const
- {
- return _M_param._M_den.empty()
- ? std::vector<double>(1, 1.0) : _M_param._M_den;
- }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- return _M_param._M_int.empty()
- ? result_type(0) : _M_param._M_int.front();
- }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return _M_param._M_int.empty()
- ? result_type(1) : _M_param._M_int.back();
- }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two piecewise constant distributions have the
- * same parameters.
- */
- friend bool
- operator==(const piecewise_constant_distribution& __d1,
- const piecewise_constant_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %piecewise_constant_distribution random
- * number distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %piecewise_constant_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::piecewise_constant_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %piecewise_constant_distribution random
- * number distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %piecewise_constant_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::piecewise_constant_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two piecewise constant distributions have
- * different parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::piecewise_constant_distribution<_RealType>& __d1,
- const std::piecewise_constant_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /**
- * @brief A piecewise_linear_distribution random number distribution.
- *
- * The formula for the piecewise linear probability mass function is
- *
- */
- template<typename _RealType = double>
- class piecewise_linear_distribution
- {
- static_assert(std::is_floating_point<_RealType>::value,
- "template argument not a floating point type");
- public:
- /** The type of the range of the distribution. */
- typedef _RealType result_type;
- /** Parameter type. */
- struct param_type
- {
- typedef piecewise_linear_distribution<_RealType> distribution_type;
- friend class piecewise_linear_distribution<_RealType>;
- param_type()
- : _M_int(), _M_den(), _M_cp(), _M_m()
- { }
- template<typename _InputIteratorB, typename _InputIteratorW>
- param_type(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin);
- template<typename _Func>
- param_type(initializer_list<_RealType> __bl, _Func __fw);
- template<typename _Func>
- param_type(size_t __nw, _RealType __xmin, _RealType __xmax,
- _Func __fw);
- // See: http://cpp-next.com/archive/2010/10/implicit-move-must-go/
- param_type(const param_type&) = default;
- param_type& operator=(const param_type&) = default;
- std::vector<_RealType>
- intervals() const
- {
- if (_M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_int;
- }
- std::vector<double>
- densities() const
- { return _M_den.empty() ? std::vector<double>(2, 1.0) : _M_den; }
- friend bool
- operator==(const param_type& __p1, const param_type& __p2)
- { return (__p1._M_int == __p2._M_int
- && __p1._M_den == __p2._M_den); }
- private:
- void
- _M_initialize();
- std::vector<_RealType> _M_int;
- std::vector<double> _M_den;
- std::vector<double> _M_cp;
- std::vector<double> _M_m;
- };
- explicit
- piecewise_linear_distribution()
- : _M_param()
- { }
- template<typename _InputIteratorB, typename _InputIteratorW>
- piecewise_linear_distribution(_InputIteratorB __bfirst,
- _InputIteratorB __bend,
- _InputIteratorW __wbegin)
- : _M_param(__bfirst, __bend, __wbegin)
- { }
- template<typename _Func>
- piecewise_linear_distribution(initializer_list<_RealType> __bl,
- _Func __fw)
- : _M_param(__bl, __fw)
- { }
- template<typename _Func>
- piecewise_linear_distribution(size_t __nw,
- _RealType __xmin, _RealType __xmax,
- _Func __fw)
- : _M_param(__nw, __xmin, __xmax, __fw)
- { }
- explicit
- piecewise_linear_distribution(const param_type& __p)
- : _M_param(__p)
- { }
- /**
- * Resets the distribution state.
- */
- void
- reset()
- { }
- /**
- * @brief Return the intervals of the distribution.
- */
- std::vector<_RealType>
- intervals() const
- {
- if (_M_param._M_int.empty())
- {
- std::vector<_RealType> __tmp(2);
- __tmp[1] = _RealType(1);
- return __tmp;
- }
- else
- return _M_param._M_int;
- }
- /**
- * @brief Return a vector of the probability densities of the
- * distribution.
- */
- std::vector<double>
- densities() const
- {
- return _M_param._M_den.empty()
- ? std::vector<double>(2, 1.0) : _M_param._M_den;
- }
- /**
- * @brief Returns the parameter set of the distribution.
- */
- param_type
- param() const
- { return _M_param; }
- /**
- * @brief Sets the parameter set of the distribution.
- * @param __param The new parameter set of the distribution.
- */
- void
- param(const param_type& __param)
- { _M_param = __param; }
- /**
- * @brief Returns the greatest lower bound value of the distribution.
- */
- result_type
- min() const
- {
- return _M_param._M_int.empty()
- ? result_type(0) : _M_param._M_int.front();
- }
- /**
- * @brief Returns the least upper bound value of the distribution.
- */
- result_type
- max() const
- {
- return _M_param._M_int.empty()
- ? result_type(1) : _M_param._M_int.back();
- }
- /**
- * @brief Generating functions.
- */
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng)
- { return this->operator()(__urng, _M_param); }
- template<typename _UniformRandomNumberGenerator>
- result_type
- operator()(_UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng)
- { this->__generate(__f, __t, __urng, _M_param); }
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- template<typename _UniformRandomNumberGenerator>
- void
- __generate(result_type* __f, result_type* __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p)
- { this->__generate_impl(__f, __t, __urng, __p); }
- /**
- * @brief Return true if two piecewise linear distributions have the
- * same parameters.
- */
- friend bool
- operator==(const piecewise_linear_distribution& __d1,
- const piecewise_linear_distribution& __d2)
- { return __d1._M_param == __d2._M_param; }
- /**
- * @brief Inserts a %piecewise_linear_distribution random number
- * distribution @p __x into the output stream @p __os.
- *
- * @param __os An output stream.
- * @param __x A %piecewise_linear_distribution random number
- * distribution.
- *
- * @returns The output stream with the state of @p __x inserted or in
- * an error state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_ostream<_CharT, _Traits>&
- operator<<(std::basic_ostream<_CharT, _Traits>& __os,
- const std::piecewise_linear_distribution<_RealType1>& __x);
- /**
- * @brief Extracts a %piecewise_linear_distribution random number
- * distribution @p __x from the input stream @p __is.
- *
- * @param __is An input stream.
- * @param __x A %piecewise_linear_distribution random number
- * generator engine.
- *
- * @returns The input stream with @p __x extracted or in an error
- * state.
- */
- template<typename _RealType1, typename _CharT, typename _Traits>
- friend std::basic_istream<_CharT, _Traits>&
- operator>>(std::basic_istream<_CharT, _Traits>& __is,
- std::piecewise_linear_distribution<_RealType1>& __x);
- private:
- template<typename _ForwardIterator,
- typename _UniformRandomNumberGenerator>
- void
- __generate_impl(_ForwardIterator __f, _ForwardIterator __t,
- _UniformRandomNumberGenerator& __urng,
- const param_type& __p);
- param_type _M_param;
- };
- /**
- * @brief Return true if two piecewise linear distributions have
- * different parameters.
- */
- template<typename _RealType>
- inline bool
- operator!=(const std::piecewise_linear_distribution<_RealType>& __d1,
- const std::piecewise_linear_distribution<_RealType>& __d2)
- { return !(__d1 == __d2); }
- /* @} */ // group random_distributions_poisson
- /* @} */ // group random_distributions
- /**
- * @addtogroup random_utilities Random Number Utilities
- * @ingroup random
- * @{
- */
- /**
- * @brief The seed_seq class generates sequences of seeds for random
- * number generators.
- */
- class seed_seq
- {
- public:
- /** The type of the seed vales. */
- typedef uint_least32_t result_type;
- /** Default constructor. */
- seed_seq()
- : _M_v()
- { }
- template<typename _IntType>
- seed_seq(std::initializer_list<_IntType> il);
- template<typename _InputIterator>
- seed_seq(_InputIterator __begin, _InputIterator __end);
- // generating functions
- template<typename _RandomAccessIterator>
- void
- generate(_RandomAccessIterator __begin, _RandomAccessIterator __end);
- // property functions
- size_t size() const
- { return _M_v.size(); }
- template<typename OutputIterator>
- void
- param(OutputIterator __dest) const
- { std::copy(_M_v.begin(), _M_v.end(), __dest); }
- private:
- ///
- std::vector<result_type> _M_v;
- };
- /* @} */ // group random_utilities
- /* @} */ // group random
- _GLIBCXX_END_NAMESPACE_VERSION
- } // namespace std
- #endif
|